无机纳米颗粒在植物转化中的应用

霍爱玲,陈金慧,甄艳,夏兵,陈桢雨,施季森1,4*

南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (06) : 162-166.

PDF(1359871 KB)
PDF(1359871 KB)
南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (06) : 162-166. DOI: 10.3969/j.issn.1000-2006.2016.06.025
综合述评

无机纳米颗粒在植物转化中的应用

  • 霍爱玲1,2,陈金慧1,4,甄 艳1,夏 兵1,3,陈桢雨1,施季森1,4*
作者信息 +

Inorganic nanoparticles as delivery vectors for plant transformation

  • HUO Ailing1,2,CHEN Jinhui1,4,ZHEN Yan1,XIA Bing1,3,CHEN Zhenyu1,SHI Jisen1,4*
Author information +
文章历史 +

摘要

随着纳米生物技术的发展,基于纳米材料构建基因载体的植物转基因技术,逐渐成为一类具有划时代意义的创新性高效植物转基因技术。笔者综述了羟基磷灰石、硅、碳纳米管、量子点、磁性纳米颗粒等无机纳米颗粒在植物转化中的应用,并比较了这些纳米载体的优势及存在的问题。分析认为,不同纳米材料对受体植物细胞的影响、纳米材料及其构建的载体入胞机制等基础理论问题迫切需要进一步阐明,入胞途径的细胞生物学和生理生化过程需要进一步实证,开发可定向输送目的基因到特定细胞或细胞器的安全高效新载体、目的基因的高效释放和功能激发等,将是未来一段时间内纳米植物生物技术研究的主要方向。

Abstract

With the development of nanotechnology, nano materials have been increasingly used for delivering genetic materials into plant cells for engineering purposes, which represent a major breakthrough in the 21st century. In this article, we reviewed the advancement of genetic engineering in plant using nanomaterials, including hydroxyapatite, silica, carbon nanotube, magnetite and quantum dots. The advantages and disadvantages of those materials were summarized. The effects of nanomaterials on the physiology of plant cells, as well as the mechanisms by which those nanomaterials are transported across cells are still largely unclear. The cellular biological and biochemistry mechanisms related to this process also need to be clarified. As a result, developing much safer nanomaterials that can specifically deliver genetic materials into target cells or even sub cellular compartments, with highly efficient payload release and functioning will be a main focus in future nanomaterial research.

引用本文

导出引用
霍爱玲,陈金慧,甄艳,夏兵,陈桢雨,施季森1,4*. 无机纳米颗粒在植物转化中的应用[J]. 南京林业大学学报(自然科学版). 2016, 40(06): 162-166 https://doi.org/10.3969/j.issn.1000-2006.2016.06.025
HUO Ailing,CHEN Jinhui,ZHEN Yan,XIA Bing,CHEN Zhenyu,SHI Jisen1,4*. Inorganic nanoparticles as delivery vectors for plant transformation[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2016, 40(06): 162-166 https://doi.org/10.3969/j.issn.1000-2006.2016.06.025
中图分类号: Q948   

参考文献

[1] Jin L, Zeng X, Liu M, et al. Current progress in gene delivery technology based on chemical methods and nano-carriers[J]. Theranostics, 2014, 4(3): 240-255.Doi:10.7150/thno.6914.
[2] Torney F, Trewyn B G, Lin V S, et al. Mesoporous silica nanoparticles deliver DNA and chemicals into plants[J].Nat Nanotechnol, 2007, 2(5): 295-300.Dou:10.1038/nnano.2007.108.
[3] 董琛, 施季森, 陆叶,等. 聚乙二醇介导鹅掌楸悬浮细胞与CdSe/ZnS量子点纳米颗粒共孵育的互作特征[J]. 中国科学:生命科学,2011, 41(6):494-501. Dong C, Shi J S, Lu Y, et al.Interaction characteristics of the co-incubation between CdSe/ZnS quantum dots and Liriodendron hybrids suspension cells by PEG-mediation[J]. Science China Life, 2011,41(6): 494-501.
[4] Xia B, Dong C, Zhang W, et al. Highly efficient uptake of ultrafine mesoporous silica nanoparticles with excellent biocompatibility by Liriodendron hybrid suspension cells[J].Sci China Life Sci, 2013, 56(1): 82-89. Doi:10.1007/s11427-012-4422-8.
[5] Sone T, Nagamori E, Ikeuchi T, et al. A novel gene delivery system in plants with calcium alginate micro-beads[J].J Biosci Bioeng, 2002, 94(1): 87-91.Doi:10.1016/s1389-1723(02)80123-2.
[6] Naqvis, Maitra A N, Abdin M Z, et al. Calcium phosphate nanoparticle mediated genetic transformation in plants[J]. Journal of Materials Chemistry, 2012, 22(8):3500-3507.Doi:10.1039/czjm,1739h.
[7] Nair R, Poulose A C, Nagaoka Y, et al. Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants[J].J Fluoresc, 2011, 21(6): 2057-2068.Doi:10.1007/s10895-011-0904-5.
[8] Sun D, Hussain H I, Yi Z, et al. Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles[J]. Plant Cell Rep, 2014, 33(8): 1389-1402. Doi:10.1007/s00299-014-1624-5.
[9] Chang F P, Kuang L Y, Huang C A, et al. A simple plant gene delivery system using mesoporous silica nanoparticles as carriers[J]. Journal of Materials Chemistry: B, 2013, 1(39):5279. Doi:10.1039/c3tb20529k.
[10] Martin-Ortigosa S, Valenstein J S, Sun W, et al. Parameters affecting the efficient delivery of mesoporous silica nanoparticle materials and gold nanorods into plant tissues by the biolistic method[J].Small, 2012, 8(3): 413-422. Doi:10.1002/smll.201101294.
[11] Martin-Ortigosa S, Valenstein J S, Lin V S Y, et al.Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method[J].Adv Funct Mater, 2012, 22(17): 3576-3582. Doi:10.1002/adfm.201200359.
[12] Bates K, Kostarelos K. Carbon nanotubes as vectors for gene therapy: past achievements, present challenges and future goals[J].Adv Drug Deliv Rev, 2013, 65(15): 2023-2033. Doi:10.1016/j.addr.2013.10.003.
[13] Liu Q, Chen B, Wang Q, et al. Carbon nanotubes as molecular transporters for walled plant cells[J]. Nano Lett, 2009, 9(3): 1007-1010. Doi:10.1021/nl803083u.
[14] Giraldo J P, Landry M P, Faltermeier S M, et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing[J].Nat Mater, 2014, 13(4): 400-408. Doi:10.1038/nmat3890.
[15] Burlaka O M, Pirko Y V, Yemets A I, et al. Plant genetic transformation using carbon nanotubes for DNA delivery[J].Cytol Genet, 2015, 49(6): 349-357. Doi:10.3103/s009545271506002x.
[16] Fu Y Q, Li L H,Wang P W. Delivering DNA into plant cell by gene carriers of ZnS nanoparticles[J].Chemical Research in Chinese Universities, 2012, 28(4):672-676.
[17] Navarro D A, Bisson M A, Aga D S. Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants[J]. Journal of hazardous materials, 2012, 211: 427-435. Doi:10.1016/j.jhazmat.2011.12.012.
[18] Zhang T, Stilwell J L, Gerion D, et al.Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements[J]. Nano Letters, 2006, 6(4): 800-808. Doi:10.1021/nl0603350.
[19] Kamei K, Mukai Y, Kojima H, et al.Direct cell entry of gold/iron-oxide magnetic nanoparticles in adenovirus mediated gene delivery[J]. Biomaterials, 2009, 30(9): 1809-1814. Doi:10.1016/j.biomaterials.2008.12.015.
[20] 王凤华, 刘俊, 童春义, 等. 电击法磁性纳米颗粒作为水稻转基因载体的研究[J]. 分析化学, 2010, 38(5): 617-621. Doi:10.3724/SP.J.1096.2010.00617. Wang F H,Liu J,Tong C Y,et al. Magnetic nanoparticle as rice transgene vector mediated by electroporation[J].Chinese Journal of Analytical Chemistry, 2010, 38(5):617-621.
[21] Racuciu M, Creanga D E. TMA-OH coated magnetic nanoparticles internalized in vegetal tissue[J]. Romanian Journal of Physics, 2007, 52(3/4): 395.
[22] Wang H, Kou X, Pei Z, et al. Physiological effects of magnetite(Fe3O4)nanoparticles on perennial ryegrass (Lolium perenne L.)and pumpkin(Cucurbita mixta)plants[J]. Nanotoxicology, 2011, 5(1): 30-42. Doi:10.3109/17435390.2010.489206.
[23] Ghosh P, Han G, De M, et al. Gold nanoparticles in delivery applications[J]. Advanced Drug Delivery Reviews, 2008, 60(11):1307-1315.Doi:10.1016/j.addr.2008.03.016.
[24] Hao Y, Yang X, Shi Y, et al. Magnetic gold nanoparticles as a vehicle for fluorescein isothiocyanate and DNA delivery into plant cells[J]. Botany, 2013, 91(7): 457-466. Doi:10.1139/cjb-2012-0281.

基金

基金项目:国家高技术研究发展计划(2013AA102705); 高等教育博士课程专项基金项目(SRFDP 20113204130002); 江苏省高校自然科学基金项目(13KJA220001); 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:霍爱玲(huoailing_hn@163.com),博士生。
*通信作者:施季森(jshi@njfu.edu.cn),教授。
引文格式:霍爱玲,陈金慧,甄艳,等. 无机纳米颗粒在植物转化中的应用[J]. 南京林业大学学报(自然科学版),2016,40(6):162-166.

PDF(1359871 KB)

Accesses

Citation

Detail

段落导航
相关文章

/