[1] 雷相东,唐守正. 林分结构多样性指标研究综述[J]. 林业科学,2002,38(3):140-146.DOI:10.11707/j.1001-7488.20020325. LEI X D,TANG S Z. Institute of forest resource information techniques [J]. Scientia Silvae Sinicae, 2002,38(3): 140-146. [2] 张锦水,潘耀忠,韩立建,等. 光谱与纹理信息复合的土地利用/覆盖变化动态监测研究[J]. 遥感学报,2007(4): 500-510. DOI:10.11834/jrs.20070470. ZHANG J S,PAN Y Z,HAN L J et al. Study on dynamic monitoring of land use / cover change based on spectral and texture information [J]. Journal of Remote Sensing, 2007(4): 500-510. [3] 王妮,彭世揆,刘斌,等. 近10年江苏宿迁森林蓄积量变化的定量遥感监测[J]. 南京林业大学学报(自然科学版),2013,37(5):65-69. DOI:10.3969/j.issn.1000-2006.2013.05.013. WANG N, PENG S K, LIU B et al. A study on detecting the changes of the forest volume of Suqian in Jiangsu based on the quantitative remote sensing during 2000-2010[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2013,37(5):65-69. [4] 梁尧钦,曾辉. 高光谱遥感在植被特征识别研究中的应用[J]. 世界林业研究, 2009,22(1): 41-47.DOI:10.13466/j.cnki.lyzygl.2011. 06. 022. LIANG Y Q,ZENG H. Application of hyperspectral remote sensing in identification of vegetation on characteristics [J]. World Forestry Research, 2009,22(1): 41-47. [5] 陈丽,张晓丽,焦志敏. 基于混合像元分解模型的森林叶面积指数反演[J]. 农业工程学报,2013,29(13):124-129. DOI:10.3969/j.issn.1002-6819.2013.13.017. CHEN L, ZHANG X L, JIAO Z M et al. Reversion of leaf area index in forest based on linear mixture model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(13):124-129. [6] 谭炳香,李增元,陈尔学,等. 高光谱遥感森林信息提取研究进展[J]. 林业科学研究,2008,21(S1):105-111. DOI:10.3321/j.issn:1001-1498.2008.s1.021. TAN B X, LI Z Y, CHEN E X, et al Research advance in forest information extraction from hyoerspectral remote sensing data [J]. Forest Research, 2008,21(S1):105-111. [7] OZDEMIR I, KARNIELI A. Predicting forest structural parameters using the image texture derived from World View-2 multispectral imagery in a dry land forest,Israel [J]. International Journal of Applied Earth Observation and Geo-information,2011,13:701-710.DOI:10.1016/j.jag. 2011.05.006. [8] 周靖靖,赵忠,刘金良,等. 基于快鸟影像纹理特性的刺槐林叶面积指数估算[J]. 应用生态学报,2014,25(5): 1266-1274. ZHOU J J, ZHAO Z, LIU J L,et al. Estimating leaf area index of black locust(Robina pseudoacacia L.)plantations based on texture parameters of Quick bird imagery[J]. Chinese Journal of Applied Ecology, 2014,24(5): 1266-1274. [9] KAYITAKIRE F, HAMEL C, DEFOURNY P. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery[J]. Remote Sensing of Environment, 2006, 102(3/4): 390-401. DOI:10.1016/j.rse.2006.02.022. [10] MARCEAU D J, HOWARTH P J, DUBOIS J M, et al. Evaluation of the grey-level co-occurrence matrix method for land-cover classification using spot imagery [J]. IEEE Transactions on Geoscience & Remote Sensing, 1990, 28(4): 513-519. [11] 刘锦绣,刘平慧,吕颖,等. 变窗口纹理在SPOT5影像土地覆盖分类中的应用研究[J].地理与地理信息科学, 2013,29(5):26-30.DOI:10.7702/dlydlxxkx20130506. LIU J X, LIU P H, LYU Y,et al. An applied research of changing window texture land cover cassification using SPOT5 image [J]. Geography and Geo-Information Science, 2013,29(5):26-30. [12] HUANG Y,YUE A Z, SU W, et al. Texture feature extraction for land-cover classification of remote sensing data in land consolidation district using semi-variogram[J]. Appled Computer & Appled Computation Science, 2008,7(7):857-864. [13] PATHAK V, DIKSHIT O. A new approach for finding an appropriate combination of texture parameters for classification[J]. Geocarto International, 2010, 25(4):295-313. [14] SHABAN M A, DIKSHIT O. Evaluation of merging SPOT multispectral and panchromatic data for classification of urban environment[C]// Geoscience and Remote Sensing Symposium, 1999. IGARSS ’99 Proceedings. IEEE, 1999, 2:1214-1216.DOI:10.1109/IGARSS.1999.774582. [15] 黎良财,张晓丽,郭航. 基于 SVM 方法的 SPOT-5影像植被分类[J]. 东北林业大学学报,2014,42(1): 51-56. LI L C,ZHANG X L, GUO H. Vegetation extraction in SPOT5 image with SVM method [J]. Journal of Northeast Forestry University,2014,42(1): 51-56. [16] 宁亮亮,张晓丽. 基于纹理信息的Landsat-8影像植被分类初探[J].中南林业科技大学学报,2014,34(9):60-64.DOI:10.3969/ j.issn.1673-923X.2014.09.012. NING L L,ZHANG X L. A preliminary study on vegetation classification based on texture information of Landsat-8 images [J].Journal of Central South University of Forestry & Technology, 2014,34(9): 60-64. [17] 王妮,彭世揆,李明诗. 基于树种分类的高分辨率遥感数据纹理特征分析[J]. 浙江农林大学学报, 2012,29(2): 210-217. DOI:10.3969/j.issn.2095-0756.2012.02.010. WANG N,PENG S K,LI M S. High-resolution remote sensing of textural images for tree species classification [J]. Journal of Zhejiang Forestry College, 2012(2): 210-217. [18] MIGUEL A C, MARTIN R, DE JONG B H J. Estimation of tropical forest structure from SPOT-5 satellite images [J]. International Journal of Remote Sensing,2010,31(10): 2767-2782.DOI:10.1080/01431160903095460. [19]MAGURARRAN A E. Measuring biological diversity[J]. African Journal of Aquatic Science, 2004, 29(2):285-286. [20] LI Y F, HUI G, ZHAO Z H, et al. The bivariate distribution characteristics of spatial structure in natural[J]. Journal of Vegetation Science, 2012, 23(6):1180-1190. DOI: 10.1111/j.1654-1103.2012.01431.x. [21] 胡艳波,惠刚盈. 优化林分空间结构的森林经营方法探讨[J]. 林业科学研究, 2006, 19(6):1-8. HU Y B,HUI G Y. A discussion on forest management method optimizing forest spatial structure [J]. Forest Research, 2006, 19(6):1-8. [22] 惠刚盈,李丽,赵中华,等. 林木空间分布格局分析方法[J]. 生态学报,2007,27(11):4717-4728. DOI:10.3321/j.issn:1000-0933.2007.11.040. HUI G Y,LI L,ZHAO Z H, et al. Comparison of methods in analysis of the tree spatial distribution pattern[J]. Acta Ecologica Sinica, 2007, 27(11): 4717-4728. [23] EGGERS J J, BAUML R, TZSCHOPPE R, et al. Scalar costa scheme for information embedding[J]. IEEE Transactions on Signal Processing, 2003, 51(4):1003-1019. DOI:10.1109/TSP.2003.809366. |