[1] 程燕,岳彩荣.面向对象遥感图像森林分类研究进展[J].林业调查规划,2012,37(4):19-23. DOI:10.3969/j.issn.1671-3168.2012.04.005. CHENG Y, YUE C R. Study progress on forest classification of object-oriented remote sensing images [J]. Forest Inventory and Planning, 2012,37(4):19-23. [2] 张连华,庞勇,岳彩荣,等.TM影像决策树分类中的影响因素研究[J].林业科学研究,2014,27(1):1-5. DOI:10.13275/j.cnki.lykxyj.2014.01.001. ZHAGN L H, PANG Y, YUE C R, et al. Factorsaffecting decision tree classification method over TM image [J]. Forest Research, 2014, 27(1):1-5. [3] 沈明霞,何瑞银,丛静华.基于ETM+遥感影像的森林植被信息提取方法研究[J].南京林业大学学报(自然科学版),2007,31(6):113-116.DOI:10.3969/j/issn.1000-2006.2007.06.027. SHEN M X, HE R Y, CONG J H. Methodological study of information extraction of forest using ETM+ and remote sensing image [J].Journal of Nanjing Forestry University(Natural Sciences Edition), 2007, 31(6):113-116. [4] 黎良财,张晓丽, 郭航.基于SVM方法的SPOT-5影像植被分类[J].东北林业大学学报,2014,42(1):51-56. DOI:10.13759/j.cnki.dlxb.2014.01.012. LI L C, ZHANG X L,GUO H. Vegetation extraction in SPOT5 image with SVM method[J].Journal of Northeast Forestry University, 2014,42(1):51-56. [5] 马友平.基于变差函数纹理和BP人工神经网络的QuickBird影像分类研究[J].遥感技术与应用,2010,25(4):540-546. MA Y P. The Classification research of quickBird image based on variogram texture and BP artificial neural networks [J].Remote Sensing Technology and Application, 2010, 25(4):540-546. [6] 何诚,董志海,张思玉,等.基于决策树系统的遥感植被分类技术[J].测绘科学, 2014, 39(1):83-86. HE C, DONG Z H,ZHANG S Y, et al. Vegetation classification technology of hyperspectral remote sensing based on decision tree tool[J].Science of Surveying and Mapping, 2014, 39(1):83-86. [7] 李春干,邵国凡.面向对象的SPOT5图像森林分类[J].林业科学,2010,46(8):130-139. DOI: 10.11707/j.1001-7488.201008020. LI C G, SHAO G F. Object-oriented classification of forest cover using SPOT5 imagery [J].Scientia Silvae Sinicae, 2010,46(8):130-139. [8] 崔一娇,朱琳,赵力娟.基于面向对象及光谱特征的植被信息提取与分析[J].生态学报,2013,33(3):867-875. DOI: 10.5846 /stxb201204110510. CUI Y J, ZHU L, ZHAO L J. Abstraction and analysis of vegetation information based on object-oriented and spectra features [J].Acta Ecologica Sinica, 2013, 33(3):867-875. [9] BAATA M,SCHPE A. Object-oriented and multi-scale image analysis in semantic network[C]// Proc of the 2nd International Symposium on Operationalization of Remote Sensing. Enschede, Netherlands, 1999. [10 ]MYINT S W, GOBER P, BRAZEL A, et al. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery [J]. Remote Sensing of Environment, 2011, 115(5):1145-1161. DOI:10.1016/j.rse.2010.12.017. [11] 周小成,庄海东,等.面向小班对象的森林资源变化遥感监测方法——以福建省厦门市为例[J].资源科学,2013,35(8):17-18. ZHOU X C, ZHUANG H D, et al. Amethod to extract forest cover change by object-oriented classification [J]. Resources Science, 2013,35(8):17-1718. [12] 曹宝,秦其明,马海建,等.面向对象方法在SPOT5遥感图像分类中的应用——以北京市海淀区为例[J].地理与地理信息科学,2006,22(2):46-49. CAO B, QIN Q M, MA H J, et al. Application of object-oriented approach to SPOT5 image classification: a case study in Haidian District, Beijing City [J]. Geography and Geo-Information Science, 2006, 22(2):46-49. [13] 孙晓艳,杜华强,韩凝,等.面向对象多尺度分割的SPOT5影像毛竹林专题信息提取[J].林业科学,2013,49(10):80-87. DOI: 10.11707/j.1001-7488.20131013. SUN X Y, DU H Q,HAN N, et al. Multi-scale segmentation, object-based extraction of moso bamboo forest from SPOT5 imagery[J]. Scientia Silvae Sinicae, 2013, 49(10):80-87. [14] 郭亚鸽,于信芳,江东,等.面向对象的森林植被图像识别分类方法[J].地球信息科学学报,2012,14(4):514-522. DOI:10.3724/SP.J.1047.2012.00514. GUO Y H, YU X F, JIAGN D, et al. Study on forest classification based on object oriented techniques[J]. Journal of Geo-Information Science, 2012, 14(4):514-522. [15] MATHIEU R, ARYAL J, CHONG A K. Object-based classification of IKONOS imagery for mapping large-scale vegetation communities in urban areas [J]. Sensors, 2007, 7(11):2860-2880. [16] 姚成,赵晋陵.基于时序HJ-CCD影像的区域尺度水稻提取方法研究[J].南京农业大学学报,2015,38(6):1023-1029.DOI:10.7685/j.issn.1000-2030.2015.06.023. YAO C, ZHAO J L. Identifying the spatial-temporal characteristics of paddy rice using time-series HJ-CCD imagery[J]. Journal of Nanjing Agricultural University, 2015, 38(6): 1023-1029. [17] 王荣,江东,韩惠,等.高分辨率遥感影像天然林与人工林植被覆盖信息提取[J].资源科学,2013,35(4):868-874. WANG R,JIANG D,HAN H, et al. Extractingnatural and artificial forest information based on high resolution remote sensing data[J]. Resources Science, 2013, 35(4):868-874. [18] 李肇晨,罗微,陈永富,等.海南霸王岭陆均松空间分布格局及其与微生境异质性的关系[J].生态学报, 2015, 35(8):2545-2554. DOI:10.5846/stxb201406061165. LI Z C, LUO W, CHEN Y F, et al. The relationships between microhabitat heterogeneity and the spatial distribution of Dacrydium pectinatum in Bawangling, Hainan Island[J]. Acta Ecologica Sinica, 2015, 35(8):2545-2554. [19] 宋晓阳,姜小三,江东,等.基于面向对象的高分影像分类研究[J].遥感技术与应用, 2015,30(1):99-105. DOI:10.11873/j.issn.1004-0323.2015.1.0099. SONG X Y, JIANG X S, JIANG D, et al. Object-orientedclassification of high-resolution remote sensing image [J]. Remote Sensing Technology and Application, 2015,30(1):99-105. [20] 沈占锋,骆剑承,胡晓东,等.高分辨率遥感影像多尺度均值漂移分割算法研究[J].武汉大学学报(信息科学版), 2010, 35(3):313-316. DOI:10.13203/j.whugis2010.03.009 SHEN Z F, LUO J C, HU X D, et al. Amean shift multi-scale segmentation for high-resolution remote sensing images [J]. Geomatics and Information Science of Wuhan University, 2010, 35(3):313-316. [21] 刘兆祎,李鑫慧,沈润平,等.高分辨率遥感图像分割的最优尺度选择[J].计算机工程与应用, 2014,50(6):144-147. DOI:10.3778/j.issn.1002-8331.1206-0094. LIU Z W, LI X H, SHEN R P, et al. Selection of the best segmentation scale in high-resolution image segmentation [J]. Computer Engineering and Applications, 2014,50(6):144-147. [22] Drgu 瘙 塅 L, CSILLIK O, EISANK C, et al. Automated parameterisation for multi-scale image segmentation on multiple layers[J]. ISPRS Journal of Photogrammetry & Remote Sensing Official Publication of the International Society for Photogrammetry & Remote Sensing, 2014, 88:119-127. [23] 王东广,肖鹏峰,宋晓群,等.结合纹理信息的高分辨率遥感图像变化检测方法[J].国土资源遥感,2012(4):76-81. DOI:10.6046/gtzyyg.2012.04.13. WANG G D, XIAO P F, SONG X Q, et al. Changedetection method for high resolution remote sensing image in association with textural and spectral information[J]. Remote Sensing for Land & Resources, 2012(4):76-81. |