基于区域转换因子的不同立地质量阔叶林碳储量估测

孟雪,刘雪惠,高媛赟,刘俊,温小荣,林国忠,徐达

南京林业大学学报(自然科学版) ›› 2017, Vol. 41 ›› Issue (06) : 87-92.

PDF(1626393 KB)
PDF(1626393 KB)
南京林业大学学报(自然科学版) ›› 2017, Vol. 41 ›› Issue (06) : 87-92. DOI: 10.3969/j.issn.1000-2006.201606027
研究论文

基于区域转换因子的不同立地质量阔叶林碳储量估测

  • 孟 雪1,刘雪惠1,高媛赟1,刘 俊1,温小荣1*,林国忠1,徐 达2
作者信息 +

Remote sensing estimation of different site-quality broadleaved forest carbon budget in Jiande,Zhejiang

  • MENG Xue1,LIU Xuehui1, GAO Yuanyun1,LIU Jun1,WEN Xiaorong1*,LIN Guozhong1, XU Da2
Author information +
文章历史 +

摘要

【目的】研究不同立地质量类型对阔叶林碳储量遥感估测精度的影响。【方法】以2007年浙江建德市森林资源二类调查数据和TM影像为研究材料,根据区域的蓄积量-生物量转换因子连续函数法,并依据浙江省的生物量-碳储量含碳系数转换法计算阔叶林碳储量和地位级法评价立地质量等级,比较阔叶林地位质量等级中等以上、地位等级中等以下和不分地位等级3种碳储量遥感估测模型,并进行精度检验。【结果】以第1主成分为特征变量构建森林碳储量估测模型,相关系数R均在0.49以上,拟合效果较好; 将森林碳储量回归模型预测值与实测值进行对比分析,不分地位级总体估测精度为65.89%,地位等级中等以上、地位等级中等以下类型总体估测精度分别为82.53%、83.09%。【结论】分不同立地质量类型可以提高阔叶林碳储量遥感估测精度。

Abstract

【Objective】In this study, the influence of different site-quality types on the remote-sensing estimation of the carbon budget of broadleaved forests was analyzed. 【Mothed】Using forest resource inventory data on the management and TM images of Jiande City, Zhejiang Province, China in 2007, the carbon budget in broadleaved forests was calculated by the regional volume-biomass conversion factor continuous function method and biomass-carbon budget coefficient conversion method based on Zhejiang Province; site quality was evaluated by site class method, and then, three models for the estimation of the carbon budget of broad-leaved forests were compared and divided into “above-average”, “below-average site quality” and “no rank” groups, and the accuracy test was conducted. 【Result】The model for estimation of forest carbon storage was constructed with the first principal component as the characteristic variable; the correlation coefficient R was larger than 0.49, and performance was good. The forest carbon-storage regression model was compared using the measured values; whole model accuracy without site class was 65.89%, and accuracy of the above-average, below-average site-quality models were 82.53% and 83.09%, respectively. 【Conclusion】Discrimination between different site qualities can improve the precision of remote-sensing estimation of the carbon budget of broadleaved forests, and the results of this study provided adequate technical support for the remote-sensing estimation of forest carbon budgets.

引用本文

导出引用
孟雪,刘雪惠,高媛赟,刘俊,温小荣,林国忠,徐达. 基于区域转换因子的不同立地质量阔叶林碳储量估测[J]. 南京林业大学学报(自然科学版). 2017, 41(06): 87-92 https://doi.org/10.3969/j.issn.1000-2006.201606027
MENG Xue,LIU Xuehui, GAO Yuanyun,LIU Jun,WEN Xiaorong,LIN Guozhong, XU Da. Remote sensing estimation of different site-quality broadleaved forest carbon budget in Jiande,Zhejiang[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2017, 41(06): 87-92 https://doi.org/10.3969/j.issn.1000-2006.201606027
中图分类号: S757   

参考文献

[1] SABINE C L, HEIMANN M, ARTAXO P, et al. Current status and past trends of the global carbon cycle[M].Washington DC: Island Press,2004:17-44.
[2] 何红艳,郭志华,肖文发.遥感在森林地上生物量估算中的应用[J].生态学杂志,2007,26(8):1317-1322. DOI:http://dx.doi.org/10.13292/j.1000-4890.2007.0231. HE H Y, GUO Z H, XIAO W F. Application of remote sensing in forest aboveground biomass estimation[J].Chinese Journal of Ecology,2007,26(8):1317-1322.
[3] 徐天蜀.基于遥感信息的森林生物量、碳储量估测技术研究[J].林业调查规划,2008,33(3):11-13. XU T S. Study on forest biomass & carbon storage estimation based on remote sensing information[J].Forest Inventory and Planning,2008,33(3):11-13.
[4] PRACTICAL P, SPENCER R D, GREEN M A, et al. Integrating Eucalypt forest inventory and GIS in western Australia[J]. Photogrammetric Engineering and Remote Sensing,1997,63(12):1345-1351.
[5] ERIED M A, DAVIS F W, MICHAELSEN J, et al. Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables: analysis using a scene simulation model and data from FIFE[J].Remote Sensing of Environment,1995,54(3): 233-246.DOI: 10.1016/0034-4257(95)00156-5.
[6] 李海奎,雷渊才,曾伟生.基于森林清查资料的中国森林植被碳储量[J].林业科学,2011,47(7):7-12. LI H K, LEI Y C, ZENG W S. Forest carbon storage in China estimated using forestry inventory data[J]. Scientia Silvae Sinicae,2011,47(7):7-12.
[7] 胡海清,罗碧珍,魏书精,等.大兴安岭5种典型林型森林生物碳储量[J].生态学报,2015,35(17):5745-5760. HU H Q, LUO B Z, WEI S J, et al.Estimating biological carbon storage of five typical forest types in the Daxing'anling Mountains, Heilongjiang, China[J]. Acta Ecologica Sinica,2015,35(17):5745-5760.
[8] 李士美,杨传强,王宏年,等.基于森林资源清查资料分析山东省森林立木碳储量[J].应用生态学报,2014,25(8):2215-2220.DOI:10.13287/j.1001-9332.20140611.009. LI S M, YANG C Q, WANG H N, et al. Carbon storage of forest stands in Shandong Province estimated by forestry inventory data[J].Chinese Journal of Applied Ecology, 2014,25(8):2215-2220.
[9] 成向荣,虞木奎,吴统贵,等.立地条件对麻栎人工林碳储量的影响[J].生态环境学报,2012,21(10):1674-1677.DOI:10.16258/j.cnki.1674-5906.2012.10.011. CHENG X R, YU M K, WU T G, et al. Effects of site condition on carbon storage of Quercus acutissima plantations[J].Ecology and Environmental Sciences,2012,21(10):1674-1677.
[10] DIXON R K, BROWN S, HOUGHTON R A, et al. Carbon pools and flux of global forest ecosystems[J].Science, 1994,263(5144):185-190.DOI: 10.1126/science.263.5144.185.
[11] FOODY G M, BOYD D S, CUTLER M E. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions[J].Remote Sensing of Environment,2003,85(4):463-474.DOI: 10.1016/S0034-4257(03)00039-7.
[12] HAME T, SALLI A, ANDERSSON K, et al. A new methodology for the estimation of biomass of conifer-dominated boreal forest using NOAA AVHRR data[J].International Journal of Remote Sensing,1997,18(15):3211-3243. DOI: 10.1080/014311697217053.
[13] LU D S, BATISTELLA M. Exploring TM image texture and its relationships with biomass estimation in Rondonia, Brazilian, Amazon[J]. Acta Amazonica,2005,35(2):261-268.DOI: 10.1590/S0044-59672005000200015.
[14] 周春国,徐雁南.地位级表编制的新方法[J].华东森林经理,1997,11(2):11-13.DOI:10.13466/j.cnki.lyzygl.1997.05.009. ZHOU C G, XU Y N. Anew method about site class table[J].East China Forest Management,1997,11(2):11-13.
[15] 林昌庚,周春国,林俊钦,等.关于地位级表[J].林业资源管理,1997(5):30-33. LIN C G, ZHOU C G, LIN J Q, et al. Onsite class table[J].Forest Resources Management,1997(5):30-33.
[16] 刘俊,孟雪,温小荣,等. 基于不同立地质量的森林蓄积量遥感估测[J]. 西北林学院学报,2016,31(1):186-191. LIU J, MENG X, WEN X R, et al. Remote sensing estimation of forest volume based on different site qualities[J].Journal of Northwest Forestry University,2016,31(1):186-191.
[17] 陶吉兴.浙江森林碳汇功能监测[M]. 北京:中国林业出版社,2014:249-260.
[18] 张超,彭道黎,涂云燕,等.利用TM影像和偏最小二乘回归方法估测三峡库区森林蓄积量[J].北京林业大学学报,2013,35(3):11-17. DOI:10.13332/j.1000-1522.2013.03.021. ZHANG C, PENG D L, TU Y Y, et al. Predicting forest volume in Three Gorges Reservoir Region using TM images and partial least squares regression[J].Journal of Beijing Forestry University,2013, 35(3):11-17.
[19] 徐天蜀,张王菲,岳彩荣.基于PCA的森林生物量遥感信息模型研究[J].生态环境,2007,16(6):1759-1762.DOI:10.16258/j.cnki.1674-5906.2007.06.047. XU T S, ZHANG W F, YUE C P. Remote-sensing information model of forest biomass based on principal components analysis[J].Ecology and Environment,2007, 16(6):1759-1762.
[20] 罗亚,徐建华,岳文泽.基于遥感影像的植被指数研究方法述评[J].生态科学,2005,24(1):75-79. LUO Y, XU J H, YUE W Z. Research on vegetation indices based on the remote sensing images[J].Ecologic Science,2005, 24(1):75-79.
[21] 刘俊,孟雪,温小荣,等. 基于不同立地质量的松树林蓄积量遥感估测[J]. 林业资源管理,2015(5):55-60.DOI:10.13466/j.cnki.lyzygl.2015.05.010. LIU J, MENG X, WEN X R, et al. Remote sensing estimation of pine volume based on different site qualities[J].Forest Resources Management,2015(5):55-60.

基金

基金项目:国家重点研发计划(2016YFC0502704); 江苏省林业三新工程项目(Lysx[2015]19); 南京林业大学科技创新基金项目(CX2011-24); 江苏高校优势学科建设工程资助项目(PAPD) 第一作者:孟雪(mengxue1008@yeah.net)。*通信作者:温小荣(njw9872@163.com),副教授。

PDF(1626393 KB)

Accesses

Citation

Detail

段落导航
相关文章

/