基于遥感的城市化进程监测方法及其应用

王璟睿,张玲玲,李明诗,沈文娟

南京林业大学学报(自然科学版) ›› 2017, Vol. 41 ›› Issue (05) : 57-64.

PDF(3613748 KB)
PDF(3613748 KB)
南京林业大学学报(自然科学版) ›› 2017, Vol. 41 ›› Issue (05) : 57-64. DOI: 10.3969/j.issn.1000-2006.201608018
研究论文

基于遥感的城市化进程监测方法及其应用

  • 王璟睿,张玲玲,李明诗,沈文娟
作者信息 +

Monitoring methods and application of urbanization processes based on remote sensing

  • WANG Jingrui, ZHANG Lingling, LI Mingshi*, SHEN Wenjuan
Author information +
文章历史 +

摘要

【目的】利用不同分类精度的指数模型分析南京2001—2015年的城市化进程。【方法】借助2001年Landsat7 ETM+,2006、2010年Landsat5 TM及2015年Landsat8 OLI南京地区遥感影像数据,首先通过归一化差异水体指数(the modified normalized difference water index,MNDWI)提取水体信息,随后利用城市指数(the urban index,UI)、归一化建筑指数(the normalized difference built-up index,NDBI)、建筑指数(the index-based built-up index,IBI)、基于红光的建筑指数(the visible red-based built-up index,VrNIR-BI)、基于绿光的建筑指数(the visible green-based built-up index,VgNIR-BI)模型提取不透水层,结合最大类间差分法将影像分为建成区和非建成区两类,最后融合分类结果形成南京地区城市化专题地图。【结果】从验证结果来看,所有模型的总体精度均高于64.33%,其中UI、NDBI模型具有总体最高精度。UI模型精度最低69.67%(2001年),最高85%(2010年); NDBI模型精度最低72.00%(2001年),最高82.60%(2010年)。在UI模型和NDBI模型下城市化发展水平,分别从2001年的11.55%和17.66%攀升至2015年的20.50%和25.60%。【结论】在精度最高的UI指数和NDBI指数模型下,南京市除高淳区和溧水区之外的各个行政区的建成区增量前4名分别是江宁区、六合区、浦口区和栖霞区。

Abstract

【Objective】To explore the accuracy of classification of different models and the urbanization process of Nanjing during 2001-2015, we used Landsat 5 TM imagery acquired in 2006 and 2010, Landsat 7 ETM+ imagery acquired in 2001, and Landsat 8 OLI imagery acquired in 2015, covering Nanjing City. 【Method】We computed the modified normalized difference water index(MNDWI)to mask out water bodies within the study area, followed by the extraction of the built-up areas and non-built-up classes via five urban index models(UI, the urban index; NDBI, the normalized difference built-up index; IBI, the index-based built-up index; VrNIR-BI, the visible red-based built-up index; and VgNIR-BI, the visible green-based built-up index)based on a maximum inter-class difference algorithm derived from the Landsat images. 【Results】The validation results indicated that the accuracy of all models was over 64.33%. Among all six models, UI and NDBI had higher overall mapping accuracy, and their overall accuracy was among the highest(85.00% and 82.60%)in 2010, and the lowest(69.67% and 72.00%)in 2001, respectively. By calculating the increment of built-up area from these two indices, the urbanization degree calculated from UI increased from 11.55% in 2001 to 20.50% in 2015, whereas the urbanization degree derived from NDBI increased from 17.66% in 2001, to 25.60% in 2015. 【Conclusion】Furthermore, without considering Gaochun and Lishui Districts, the top four districts in urbanization processes of UI and NDBI were Jiangning, Luhe, Pukou, and Qixia.

引用本文

导出引用
王璟睿,张玲玲,李明诗,沈文娟. 基于遥感的城市化进程监测方法及其应用[J]. 南京林业大学学报(自然科学版). 2017, 41(05): 57-64 https://doi.org/10.3969/j.issn.1000-2006.201608018
WANG Jingrui, ZHANG Lingling, LI Mingshi, SHEN Wenjuan. Monitoring methods and application of urbanization processes based on remote sensing[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2017, 41(05): 57-64 https://doi.org/10.3969/j.issn.1000-2006.201608018
中图分类号: P237   

参考文献

[1] ARNOLD J C L, GIBBONS C J. Impervious surface coverage: the emergence of a key environmental indicator[J]. Journal of the American Planning Association, 1996, 62(2): 243-258.
[2] BRAUN M, HEROLD M. Mapping imperviousness using NDVI and linear spectral unmixing of ASTER data in the Cologne-Bonn region(Germany)[C]//Remote Sensing. International Society for Optics and Photonics, 2004: 274-284.
[3] WENG Q. Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends[J]. Remote Sensing of Environment, 2012, 117: 34-49.
[4] KAWAMURA M, JAYAMANA S, TSUJIKO Y. Relation between social and environmental conditions in Colombo Sri Lanka and the urban index estimated by satellite remote sensing data[J]. The International Archives of Photogrammetry and Remote Sensing, 1996, 31(PART B7): 321-326.
[5] 查勇, 倪绍祥, 杨山. 一种利用TM图像自动提取城镇用地信息的有效方法[J]. 遥感学报, 2003, 7(1): 37-40. DOI: 1007-4619(2003)01-0037-04. ZHA Y, NI S X, YANG S. An effective approach to automatically extract urban land-use from TM imagery[J]. Journal of Remote Sensing, 2003, 7(1): 37-40.
[6] ESTOQUE R C, MURAYAMA Y. Classification and change detection of built-up lands from Landsat-7 ETM+ and Landsat-8 OLI/TIRS imageries: a comparative assessment of various spectral indices[J]. Ecological Indicators, 2015, 56: 205-217.
[7] 任文利, 江东, 董东林, 等. 成都市城市扩张遥感监测及演变特征研究[J]. 甘肃科学学报, 2014, 26(2): 15-21. DOI: 10.16468/j.cnki.issn1004-0366.2014.02.002. REN W L, JIANG D, DONG D L, et al. A study on remote sensing monitoring and evolution characteristics of urban expansion of Chengdu City[J]. Journal of Gansu Sciences, 2014, 26(2): 15-21.
[8] 穆亚超, 颉耀文, 张玲玲, 等. 1994—2015年兰州市不透水面变化分析[J]. 地理信息空间, 2017, 15(2): 94-101. DOI: 10.3969/j.issn.1672-4623.2017.02.029. MU Y C, JIE Y W, ZHANG L L, et al. Analysis of the impervious surface changes in Lanzhou City from 1994 to 2015[J]. Geospatial Information, 2017, 15(2): 94-101.
[9] 沈文娟, 李明诗. Landsat 长时间序列数据格式统一与反射率转换方法实现[J].国土资源遥感, 2014, 26(4):78-84. DOI: 10.6046 /gtzyyg.2014. 04.13. SHEN W J, LI M S. Method for Landsat dense time series data format unification and surface reflectance conversion[J].Remote Sensing for Land and Resources, 2014, 26(4):78-84.
[10] McFEETERS S K. The use of the normalized difference water index(NDWI)in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7): 1425-1432.
[11] XU H. Modification of normalised difference water index(MNDWI)to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006, 27(14): 3025-3033.
[12] DU Z, LINGHU B, LING F, et al. Estimating surface water area changes using time-series Landsat data in the Qingjiang River basin, China[J]. Journal of Applied Remote Sensing, 2012, 6(1): 063609.
[13]徐涵秋. 一种快速提取不透水面的新型遥感指数[J].武汉大学学报·信息科学版, 2008, 33(11): 1150-1153. DOI: 1671-8860(2008)11-1150-04. XU H Q. A new remote sensing index for fastly extracting impervious surface information[J]. Geomatics and Information Science of Wuhan University, 2008, 33(11):1150-1153.
[14]李景刚, 黄诗峰, 李纪人. ENVISAT卫星先进合成孔径雷达数据水体提取研究——改进的最大类间方差阈值法[J]. 自然灾害学报, 2010, 19(3): 139-145. DOI: 1004-4574(2010)03-0139-07. LI J G, HUANG S F, LI J R. Research on extraction of water body from ENVISAT ASAR images: a modified Otsu threshold method[J]. Journal of Natural Disasters, 2010, 19(3): 139-145.
[15] 叶斌, 官卫华, 梁晶, 等. 城市发展政策对南京城市总体规划实施的影响[C]//新常态:传承与变革——2015年中国城市规划年会论文集, 2015.

基金

基金项目:国家林业局“948”项目(2014-04-25); 江苏高校品牌专业建设工程资助项目(PPZY2015A062); 国家自然科学基金项目(31270587,31670552); 江苏高校优势学科建设工程资助项目(PAPD); 江苏省高校研究生科研创新计划项目(KYLX15_0908) 第一作者:王璟睿(wangjingrui59@sina.com)。*通信作者:李明诗(nfulms@aliyun.com),教授,博士。

PDF(3613748 KB)

Accesses

Citation

Detail

段落导航
相关文章

/