原始红松林土壤理化及微生物碳代谢特征对生长季动态的响应

孙雪,韩冬雪,刘岩,冯富娟,隋心

南京林业大学学报(自然科学版) ›› 2017, Vol. 41 ›› Issue (05) : 18-26.

PDF(1599813 KB)
PDF(1599813 KB)
南京林业大学学报(自然科学版) ›› 2017, Vol. 41 ›› Issue (05) : 18-26. DOI: 10.3969/j.issn.1000-2006.201609042
专题报道

原始红松林土壤理化及微生物碳代谢特征对生长季动态的响应

  • 孙 雪1,韩冬雪1,刘 岩1,冯富娟1*,隋 心2
作者信息 +

Responses of soil physicochemical properties and soil microorganism characteristics regareding as carbon metabolism in original Korean pine forest

  • SUN Xue1,HAN Dongxue1,LIU Yan1,FENG Fujuan1*,SUI Xin2
Author information +
文章历史 +

摘要

【目的】明确原始红松林内土壤微生物群落对碳源的利用、土壤理化性质的季节变化规律及差异机制,探讨原始红松林土壤理化及生物学特征对气象因子季节动态的响应。【方法】以小兴安岭典型的原始阔叶红松林为研究对象,分别于2015年5—10月生长季内采集0~10 cm和≥10~20 cm的表层土壤样品。采用Biolog-ECO微平板检测法和土壤理化性质的常规测定方法测定红松林内土壤微生物功能多样性及土壤理化指标。【结果】①研究样地的多项土壤理化指标在月份间差异显著。②在整个生长季内平均颜色变化率(AWCD)的变化趋势基本一致,均随着培养时间的延长而逐渐升高,培养168 h以后,AWCD增加幅度逐渐减弱; AWCD值和多样性指数在月份间差异显著; 土壤微生物群落的代谢活性表现出明显的季节差异,并呈现一定的规律性,6月显著高于其他月份(P<0.05)。③氨基酸类、多聚物类、碳水化合物类碳源是红松林土壤微生物群落利用的主要优势碳源类型; 通过主成分分析(PCA)、聚类分析可将土壤微生物群落碳源代谢特征大致分为3簇,即5—6月、7月、8—10月; 土壤微生物利用碳水化合物类、氨基酸类、羧酸类碳源的变化对季节最为敏感。④通过相关性分析发现,AWCD值和多样性指数与速效磷、速效钾、含水量和有效氮之间存在显著或极显著相关性; 分类变异分析发现土壤理化性质变化是引起微生物功能多样性发生季节性变化的主要因子,其中含水量、速效磷的解释度分别为12.76%和30.71%。【结论】原始阔叶红松林土壤理化及微生物功能碳代谢特征具有显著的生长季动态变化,月降水总量变化的影响最为重要。

Abstract

【Objective】Understand the seasonal variations and mechanisms of the differences in the soil microbial community and soil physicochemical properties for a original Korean pine forest, and explore the seasonal changes in the soil physicochemical properties in response to meteorological factors.【Method】The study site was located in Xiaoxing'an Mountain, a typical original broadleaf Korean pine forest, and the soil(0-10 cm and ≥10-20 cm)was sampled from May to October in 2015. The soil microbial functional diversity and soil physicochemical properties were measured by using the Biolog microplate method and conventional measurement methods. 【Result】 The soil physicochemical properties had significant differences in different months. The average well color development(increased of AWCD)value gradually with prolonged culture time; the increase of AWCD value gradually weakened after 168 hours. The AWCD values and microbial diversity were significantly different among months. The metabolic activity of the soil microbial community had significant seasonal variation, and was the lowest in July and the highest in June(P < 0.05). Amino acids, polymers, and carbohydrates were the dominant carbon sources. The results of principal component analysis(PCA)showed that the metabolic characteristics of soil microbial community carbon were divided into three clusters: May to June, July, and from August to October. The utilization of carbohydrates, amino acids and carboxylic acids were more sensitive to seasonal variations than that use of other carbon sources. The results of correlation analysis showed that AWCD value and microbial diversity indices had significant positive correlations with available P, available K, soil water content, and available N. Soil water content(which explained 12.76% of the variance), available P(which explained 30.71%)were the main factors that affected the seasonal variation in microbial functional diversity according to variation partition analysis.【Conclusion】The soil physicochemical properties and microbial functional carbon metabolism characteristics were significantly different during the growth season and the non-growth season in the original broadleaf Korean pine forest, and this was most significantly influenced by different precipitation in different months.

引用本文

导出引用
孙雪,韩冬雪,刘岩,冯富娟,隋心. 原始红松林土壤理化及微生物碳代谢特征对生长季动态的响应[J]. 南京林业大学学报(自然科学版). 2017, 41(05): 18-26 https://doi.org/10.3969/j.issn.1000-2006.201609042
SUN Xue,HAN Dongxue,LIU Yan,FENG Fujuan,SUI Xin. Responses of soil physicochemical properties and soil microorganism characteristics regareding as carbon metabolism in original Korean pine forest[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2017, 41(05): 18-26 https://doi.org/10.3969/j.issn.1000-2006.201609042
中图分类号: Q938   

参考文献

[1] 刘世荣, 王晖, 栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展[J]. 生态学报, 2011, 31(19):5437-5448. LIU S R, WANG H, LUAN J W. A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China[J]. Acta Ecologica Sinica, 2011, 31(19):5437-5448.
[2] 彭赛, 张雅坤, 葛之葳,等. 氮沉降对微生物分解森林地上凋落物过程的影响[J]. 南京林业大学学报(自然科学版),2016, 40(1):1-7.DOI:10.3969/j.issn.1000-2006.2016.01.001. PENG S, ZHANG Y B, GE Z W, et al. Effects of nitrogen deposition on littres decomposition by microorganisms in forests[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016, 40(1):1-7.
[3] MA J, BU R, LIU M, et al. Ecosystem carbon storage distribution between plant and soil in different forest types in Northeastern China[J]. Ecological Engineering, 2015, 81:353-362. DOI:10.1016/j.ecoleng.2015.04.080.
[4] 吴平, 薛建辉. 典型喀斯特地区3种人工林对土壤理化和微生物特性的影响[J]. 南京林业大学学报(自然科学版), 2015, 39(5):67-72.DOI: 10.3969 / j.issn.1000-2006.2015.05.011. WU P, XUE J H. Effects of three different plantations on soil physicochemical and microbial characteristics in Krast region[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(5):67-72.
[5] YANG D, ZHANG M. Effects of land-use conversion from paddy field to orchard farm on soil microbial genetic diversity and community structure[J]. European Journal of Soil Biology, 2014, 64:30-39. DOI:10.1016/j.ejsobi.2014.07.003.
[6] 韩冬雪, 王宁, 王楠楠, 等. 不同海拔红松林土壤微生物功能多样性[J]. 应用生态学报, 2015, 26(12):3649-3656.DOI:10.13287/j.1001-9332.20150929.017. HAN D X, WANG N, WANG N N, et al. Soil microbial functional diversity of different altitude Pinus koraiensis forests[J]. Chinese Journal of Applied Ecology, 2015, 26(12):3649-3656.
[7] 曹成有, 姚金冬, 韩晓姝,等. 科尔沁沙地小叶锦鸡儿固沙群落土壤微生物功能多样性[J]. 应用生态学报, 2011, 22(9):2309-2315. DOI:10.13287/j.1001-9332.2011.0326. CAO C Y, YAO J D, HAN X S, et al. Soil microbes functional diversity in sand-fixing Caragana microphylla communities in Horqin Sandy Land[J]. Chinese Journal of Applied Ecology, 2011, 22(9):2309-2315.
[8] 丘阳, 高露双, 张雪,等. 气候变化对阔叶红松林不同演替阶段红松种群生产力的影响[J]. 应用生态学报, 2014, 25(7):1870-1878.DOI:10.13287/j.1001-9332.20140425.006. QIU Y, GAO L S, ZHANG X, et al. Effect of climate change on net primary pro-ductivity of Korean pine at different successional stages of broad-leaved Korean pine forest[J]. Chinese Journal of Applied Ecology, 2014, 25(7):1870-1878.
[9] 王宁, 杨雪, 李世兰,等. 不同海拔红松混交林土壤微生物量碳、氮的生长季动态[J]. 林业科学, 2016, 52(1):150-158.DOI: 10.11707 /j.1001-7488.20160118. WANG N, YANG X, LI S L, et al. Seasonal dynamics of soil microbial biomass carbon-nitrogen in the Korean pine mixed forests along elevation gradient[J]. Scientla Silvae Sinicae, 2016, 52(1):150-158.
[10] 王楠楠, 韩冬雪, 孙雪,等. 降水变化对红松阔叶林土壤微生物功能多样性的影响[J]. 生态学报, 2017, 37(3):1-9.DOI: 10.5846/stxb201509101873. WANG N N, HAN D X, SUN X, et al. Effects of precipitation change on soil microbial functional diversity in the primitive Korean pine and broad leaved forests[J]. Acta Ecologica Sinica, 2017, 37(3):1-9.
[11] BISSETT A, RICHARDSON A E, BAKER G, et al.Bacterial community response to tillage and nutrient additions in a long-term wheat cropping experiment[J]. Soil Biology & Biochemistry, 2013, 58(2):281-292.DOI:10.1016/j.soilbio.2012.12.002.
[12] CHEN X L, WANG D, CHEN X, et al. Soil microbial functional diversity and biomass as affected by different thinning intensities in a Chinese fir plantation[J]. Applied Soil Ecology, 2015, 92:35-44. DOI:10.1016/j.apsoil.2015.01.018.
[13] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. LU R K. The method of soil agricultural chemical analysis[M]. Beijing: China Agriculture Science & Technology Press, 2000.
[14] ZHANG N, WAN S, GUO J, et al. Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands[J]. Soil Biology & Biochemistry, 2015, 89(6):12-23.DOI:10.1016/j.soilbio.2015.06.022.
[15] LIU B, LI Y, ZHANG X, et al. Effects of chlortetracycline on soil microbial communities: comparisons of enzyme activities to the functional diversity via Biolog Eco PlatesTM[J]. European Journal of Soil Biology, 2015, 68:69-76. DOI:10.1016/j.ejsobi.2015.01.002.
[16] FLORES-RERTERÍA D, RINCÓN A, VALLADARES F, et al. Agricultural matrix affects differently the alpha and beta structural and functional diversity of soil microbial communities in a fragmented Mediterranean holm oak forest[J]. Soil Biology & Biochemistry, 2016, 92:79-90. DOI:10.1016/j.soilbio.2015.09.015.
[17] ZHANG X, WANG X, TANG Q, et al. Effects of cultivation of Osr HSA transgenic rice on functional diversity of microbial communities in the soil rhizosphere[J]. Crop Journal, 2015, 3(2):163-167. DOI:org/10.1016/j.cj.2014.11.001.
[18] QIAN X, GU J, PAN H J, et al. Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils[J]. European Journal of Soil Biology, 2015, 70:23-30. DOI:10.1016/j.ejsobi.2015.06.005.
[19] 胡嵩, 张颖, 史荣久,等. 长白山原始红松林次生演替过程中土壤微生物生物量和酶活性变化[J]. 应用生态学报, 2013, 24(2):366-372.DOI:10.13287/j.1001-9332.2013.0168. HU S, ZHANG Y, SHI R J, et al. Temporal variations of soil microbial biomass and enzyme activities during the secondary succession of primary broadleaved-Pinus koraiensis forests in Changbai Mountains of Northeast China[J]. Chinese Journal of Applied Ecology, 2013, 24(2):366-372.
[20] 郑学博, 樊剑波, 崔键,等. 沼液还田对旱地红壤微生物群落代谢与多样性的影响[J]. 生态学报, 2016, 18:1-11.DOI:10.5846/stxb201503230555. ZHENG X B, FAN J B, CUI J, et al. Analysis on metabolic characterisitices ang functiongal diversity of soil edaphon communities in upland red soil underbiogas siurry application[J].Acta Ecologica Sinica, 2016,18:1-11.
[21] ZHANG H, LI G, SONG X, et al. Changes in soil microbial functional diversity under different vegetation restoration patterns for Hulunbeier Sandy Land[J]. Acta Ecologica Sinica, 2013, 33(1):38-44. DOI:10.1016/j.chnaes.2012.12.006.
[22] 闫法军, 田相利, 董双林,等. 刺参池塘底质微生物群落功能多样性的季节变化[J]. 生态学报, 2014, 34(11):2996-3006.DOI: 10.5846 /stxb201211231655. YAN F J, TIAN X L, DONG S L, et al. Seasonal variation of functional diversity of microbial communities in sediment and shelter of sea cucumber(Apostichopus japonicus)cultural ponds[J]. Acta Ecologica Sinica, 2014, 34(11):2996-3006.
[23] HOOGMOED M, CUNNINGHAM S C, BAKER P, et al. N-fixing trees in restoration plantings: effects on nitrogen supply and soil microbial communities[J]. Soil Biology & Biochemistry, 2014, 77(7):203-212. DOI:10.1016/j.soilbio.2014.06.008.
[24] 鲁顺保, 郭晓敏, 芮亦超,等. 澳大利亚亚热带不同森林土壤微生物群落对碳源的利用[J]. 生态学报, 2012, 32(9):2819-2826.DOI:10.5846/stxb201103270392. LU S B, GUO X M, RUI Y C, et al. Utilization of carbon sources by the soil microbial communities of different forest types in subtropical Australia[J]. Acta Ecologica Sinica, 2012, 32(9):2819-2826.
[25] 范瑞英, 杨小燕, 王恩姮,等. 黑土区不同林龄落叶松人工林土壤微生物群落功能多样性的对比研究[J]. 北京林业大学学报, 2013, 35(2):63-68.DOI:10.13332/j.1000-1522.2013.02.009. FAN R Y, YANG X Y, WANG E H, et al. Comparative studies on functional diversity of soil microbial community of larch plantations with different ages in black soil region, northeastern China[J]. Journal of Beijing Forestry University, 2013, 35(2):63-68.
[26] 闫法军, 田相利, 董双林,等. 刺参养殖池塘水体微生物群落功能多样性的季节变化[J]. 应用生态学报, 2014, 25(5):1499-1505.DOI:10.13287/j.1001-9332.2014.0012. YAN F J, TIAN X L, DONG S L, et al. Seasonal variation of functional diversity of aquatic microbial community in Apostichopus japonicus cultural pond[J]. Chinese Journal of Applied Ecology, 2014, 25(5):1499-1505.
[27] 王宁, 王美菊, 李世兰,等. 降水变化对红松阔叶林土壤微生物生物量生长季动态的影响[J]. 应用生态学报, 2015, 26(5):1297-1305.DOI:10.13287/j.1001-9332.20150302.015. WANG N, WANG M J, LI S L, et al. Effects of precipitation variation on growing seasonal dynamics of soil microbial biomass in broadleaved Korean pine mixed forest[J]. Chinese Journal of Applied Ecology, 2015, 26(5):1297-1305.
[28] 王楠楠, 杨雪, 李世兰,等. 降水变化驱动下红松阔叶林土壤真菌多样性的分布格局[J]. 应用生态学报, 2013, 24(7):1985-1990. DOI:10.13287/j.1001-9332.2013.0435. WANG N N, YANG X, LI S L, et al. Effects of precipitation variation on the distribution pattern of soil fungal diversity in broad-leaved Korean pine mixed forest[J]. Chinese Journal of Applied Ecology, 2013, 24(7):1985-1990.
[29] INNANGI M, SCHENK M K, D'ALESSANDRO F, et al. Field and microcosms decomposition dynamics of European beech leaf litter: influence of climate, plant material and soil with focus on N and Mn[J]. Applied Soil Ecology, 2015, 93:88-97. DOI:10.1016/j.apsoil.2015.04.007.
[30] 赵凤霞. 阔叶红松林不同演替阶段的凋落物分解研究[D]. 哈尔滨:东北林业大学, 2008. ZHAO F X. Decomposition of litter in different successional stages of broad leaved Korean pine forest[D]. Harbin:Northeast Forestry University,2008.
[31] URBANOVÁ M, SNAJDR J, BALDRIAN P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees[J]. Soil Biology & Biochemistry, 2015, 84:53-64. DOI:10.1016/j.soilbio.2015.02.011.
[32] 马玲, 马琨, 汤梦洁,等. 间作与接种AMF对连作土壤微生物群落结构与功能的影响[J]. 生态环境学报, 2013, 22(8):1341-1347. DOI:10.16258/j.cnki.1674-5906.2013.08.016. MA L, MA K, TANG M J, et al. Effects of intecropping and inoculation of AMF on the microbial community structure and function of continuous cropping soil[J]. Ecology and Environmental Sciences, 2013, 22(8):1341-1347.
[33] 陈法霖, 郑华, 阳柏苏, 等. 外来种湿地松凋落物对土壤微生物群落结构和功能的影响[J].生态学报, 2011, 31(12):3543-3550. CHEN F L, ZHENG H, YANG B S, et al. Effects of exotic species slash pine(Pinus elliottii)litter on the structure and function of the soil microbial community[J]. Chinese Journal of Applied Ecology, 2011, 31(12):3543-3550.
[34] CARACCIOLO A B, BUSTAMANTE M A, NOGUES I, et al. Changes in microbial community structure and functioning of a semiarid soil due to the use of anaerobic digestate derived composts and rosemary plants[J]. Geoderma, 2015, 245/246:89-97. DOI:10.1016/j.geoderma.2015.01.021.

基金

基金项目:国家自然科学基金项目(31670496); 中央高校基本科研业务费专项资金项目(2572015EA02) 第一作者:孙雪(1005612348@qq.com)。*通信作者:冯富娟(ffj9018@sina.com),教授。

PDF(1599813 KB)

Accesses

Citation

Detail

段落导航
相关文章

/