【目的】为了研究抗松材线虫病赤松体细胞胚胎发生和植株再生,进行了抗病赤松愈伤组织培养条件的优化。【方法】以抗松材线虫病赤松胚性愈伤组织22#-1和13#-1为材料,首先在体视镜下观察胚性与非胚性愈伤组织的细胞学形态差异,然后研究激素配比、基因型、继代方式和次数对愈伤组织增殖中形态上和生物量上的影响。【结果】抗病赤松愈伤组织可分为两类:一类为胚性愈伤组织,含有胚性胚柄细胞团(embryonic suspensor mass, ESM)结构,一类为非胚性愈伤组织; 胚性愈伤组织维持与增殖最佳的激素组合是2.0 mg/L 6-BA和4.0 mg/L NAA; 不同基因型的胚性愈伤组织的增殖状况存在差异,其中抗病赤松无性系22#-1胚性愈伤组织增殖较快,无性系13#-1增殖较慢,但差异不显著; 液-固与固体交替培养方式为抗病赤松胚性愈伤组织最适宜的继代增殖方式。【结论】不同的基因型增殖状况差异不显著,增殖过程应挑选胚性愈伤组织进行增殖,使用2.0 mg/L 6-BA和4.0 mg/L NAA激素配比的培养基,并采用液-固与固体交替的方式培养。
Abstract
【Objective】Somatic embryogenesis and plant regeneration of nematode-resistant Pinus densiflora were studied for obtaining a large number of embryogenic callus. 【Method】We used embryogenic calluses 22#-1 and 13#-1 of nematode-resistant P. densiflora as material. First, cell structure of callus was observed under a stereomicroscope. Then we evaluated how combination of hormone, genotype, subculture modes and times affected callus proliferation and biomass. 【Result】The results showed that successful maintenance and proliferation of embryogenic callus depended heavily on plant growth regulating substances, genotype, subculture modes and times. Embryogenic callus of nematode-resistant P. densiflora was classified into two categories: embryogenic callus containing embryonic suspensor mass and non-embryogenic callus. The optimal combination of hormone was 2.0 mg/L 6-BA and 4.0 mg/L NAA. The proliferations of embryogenic calluses in different genotypes were different. The rate of proliferation of clonal embryo callus 22#-1 was slightly faster and 13#-1 was slower, but the difference was not significant. Liquid -solid and solid alternate culture mode was the most suitable proliferation mode. 【Conclusion】we should select embryogenic callus to subculture and the optimal combination of hormone was 2.0 mg/L 6-BA and 4.0 mg/L NAA. The calluses should be cultured in a liquid -solid and solid alternate mode.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王俊伟. 抗松材线虫病赤松、黑松田间抗病性监测[D]. 南京:南京林业大学,2016. WANG J W. Field resistance monitoring of Pinus densiflora and Pinus thunbergii against Bursaphelenchus xylophilus[D]. Nanjing: Nanjing Forestry University, 2016.
[2] GUPTA P K, PULLMAN G S, TIMMIS R. Forestry in the 21st Century: the biotechnology of somatic embryogenesis[J]. BioTechnology, 1993, 11: 454-459.
[3] 刘宝光, 李成浩, 张含国. 红皮云杉胚性愈伤组织保持与增殖阶段影响因子的筛选与分析[J]. 东北林业大学学报, 2010, 38(7): 56-60.DOI:10.3969/j.issn.1000-5382.2010.07.019 LIU B G, LI C H, ZHANG H G. Screening and analyes the elements of embryogenic callus maintenance and proliferation in Picea koraiensis[J]. Journal of Northeast Forestry University, 2010, 38(7):56-60.
[4] STASOLLA C, YEUNG E C. Recent advances in conifer somatic embryogenesis: improving somatic embryo quality[J].Plant Cell, Tissue and Organ Culture, 2003, 74(1): 15-35. DOI:10.1023/A:1023345803336..
[5] LELU M A, BASTIEN C, KLIMASZEWSKA K, et al. An improved method for somatic plantlet production in hybrid larch(Larix× leptoeuropaea): Part 1. Somatic embryo maturation[J]. Plant Cell, Tissue and Organ Culture, 1994, 36(1): 107-115.DOI:10.1007/BF00048321.
[6] TAUTORUS T E, FOWKE L C, DUNSTAN D I. Somatic embryogenesis in conifers[J]. Canadian Journal of Botany, 1991, 69(9): 1873-1899. DOI:10.1139/b91-237.
[7] 吴静, 朱丽华, 许建秀, 等. 抗松材线虫病赤松胚性愈伤组织的诱导及增殖[J]. 南京林业大学学报(自然科学版), 2015, 39(1): 17-21. DOI:10.3969/j.issn.1000-2006.2015.01.004. WU J, ZHU L H, XU J X, et al. Initiation and proliferation of nematode-resistant Pinus densiflora[J]. Journal of Nanjing Forestry University(Nature Sciences Edition), 2015,39(1):17-21.
[8] IRAQI D, TREMBLAY F M. Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development[J]. Journal of Experimental Botany, 2001, 52(365): 2301-2311.DOI:10.2307/23697152
[9] 王高. 红松体细胞胚胎发生及超低温保存技术研究 [D]. 上海:上海交通大学, 2009. WANG G. Somatic Embryogenesis and cryopreservation of Pinus koraiensis[D]. Shanghai: Shanghai Jiaotong University, 2009.
[10] KLIMASZEWSKA K, TRONTIN J F, BECWAR M R, et al. Recent progress in somatic embryogenesis of four Pinus spp.[J]. Tree For Sci Biotechnol, 2007, 1(1): 11-25.
[11] 齐力旺, 韩一凡, 韩素英, 等. 麦芽糖, NAA 及 ABA 对华北落叶松体细胞胚成熟及生根的影响[J]. 林业科学, 2004, 40(1): 52-57. DOI:10.3321/j.issn:1001-7488.2004.01.009. QI L W, HAN Y F, HAN S Y, et al. Effects of malt, NAA and ABA to somatic maturation and radicle rooting of Larix principis-rupprechtii[J]. Scientia Silvae Sinicae, 2004, 40(1):52-57.
[12] JAIN S M, NEWTON R J, SOLTES E J. Enhancement of somatic embryogenesis in Norway spruce(Picea abies L.)[J]. Theoretical and Applied Genetics, 1988, 76(4): 501-506.
[13] 吕守芳, 张守攻, 齐力旺, 等. 日本落叶松体细胞胚胎发生的研究[J]. 林业科学, 2005, 41(2): 48-52. DOI:10.3321/j.issn:1001-7488.2005.02.008. LU S F, ZHANG S G, QI L W, et al. Study of somatic embryogenesis in Larix kaempferi [J]. Scientia Silvae Sinicae, 2005, 41(2): 48-52.
[14] 徐振彪, 傅作申, 原亚萍, 等. 植物组织培养过程中的褐化现象[J]. 杂粮作物, 1997(1): 55-57. XU Z B, FU Z S, YUAN Y P, et al. Browness in plant tissue culture[J]. Rain Fed Crops, 1997(1):55-57.
[15] 李茜. 白皮松体细胞胚胎发生的研究[D]. 杨凌:西北农林科技大学, 2006. LI Q. Study of somatic embryogenesis in Pinus bungeana[D]. Yangling: Northwest A & F University, 2006.
基金
基金项目:江苏省科技支撑计划(BE2014405); 国家林业公益性行业科研专项项目(201204501); 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:许建秀(723442545@qq.com)。*通信作者:吴小芹(xqwu@njfu.edu.cn),教授。