南京林业大学学报(自然科学版) ›› 2017, Vol. 41 ›› Issue (01): 183-188.doi: 10.3969/j.issn.1000-2006.2017.01.028
江大龙,徐 侠*,阮宏华*
出版日期:
2017-02-18
发布日期:
2017-02-18
基金资助:
JIANG Dalong, XU Xia*, RUAN Honghua*
Online:
2017-02-18
Published:
2017-02-18
摘要: 【目的】植物养分重吸收是指植物落叶前将养分转移到其他活组织中保存或直接利用的一种现象。对养分重吸收控制机制进行的系统了解,可为完善植物养分循环模型提供一定的理论依据。【方法】通过对国内外已有研究进行分析,全面比较不同生活型、林龄以及外界的环境(气候和土壤肥力)对植物的养分重吸收的影响。【结果】①木本植物茎、根的养分重吸收要小于非木本植物,非木本植物养分重吸收对不同的土壤肥力表现出更强的可塑性; 落叶植物比常绿植物重吸收更多的养分; ②幼龄林有更高的氮元素重吸收率; 老龄林能重吸收更多的磷元素; ③随着年均温和年均降水量的升高,磷元素重吸收率增加,氮元素重吸收率下降; ④干旱、洪水、飓风等极端天气都会显著影响养分重吸收; ⑤土壤肥力与养分重吸收呈负相关。相对于叶片,木本植物根、茎养分以及微量元素重吸收的研究还比较缺乏,对于养分吸收和重吸收对能量的消耗也缺乏了解。此外,长期气候变化对养分重吸收的影响也有待研究。【结论】养分重吸收是植物养分循环的一个重要部分,对它的精确估计将有利于完善全球气候变化模型,对进一步准确预测未来全球变化的趋势具有重要意义。
中图分类号:
江大龙,徐侠,阮宏华. 植物养分重吸收及其影响研究进展[J]. 南京林业大学学报(自然科学版), 2017, 41(01): 183-188.
JIANG Dalong, XU Xia, RUAN Honghua. Review of nutrient resorption and its regulating in plants[J].Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(01): 183-188.DOI: 10.3969/j.issn.1000-2006.2017.01.028.
[1] FOSTER N W, BHATTI J S.Forest ecosystems:nutrient cycling[J]. Encyclopedia of Soil Science, 2006(2):718-721. DOI:10.1081/E-ESS-120001709. [2] AERTS R, CHAPIN F S. The mineral nutrition of wild plants revisited: a reevaluation of processes and patterns[J]. Advances in Ecological Research, 1999: 1-67. DOI:10.1016/s0065-2504(08)60016-1. [3] CHAPIN F S, MOILANEN L. Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves[J]. Ecology, 1991, 72(2): 709-715. DOI:10.2307/2937210. [4] CHAPIN Ⅲ F S, MATSON P A, VITOUSEK P M. Decomposition and ecosystem carbon budgets[M]. New York:Springer Science & Business Media, 2012. [5] JACKSON R B, MANWARING J H, CALDWELL M M. Rapid physiological adjustment of roots to localized soil enrichment[J]. Nature, 1990, 344(6261): 58-60. DOI:10.1038/344058a0. [6] CHADWICK O A, DERRY L A, VITOUSEK P M, et al. Changing sources of nutrients during four million years of ecosystem development[J]. Nature, 1999, 397(6719):491-497. [7] VERGUTZ L, MANZONI S, PORPORATO A, et al. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants[J]. Ecological Monographs, 2012, 82(2): 205-220. DOI:10.1890/11-0416.1. [8] AERTS R. Nutrient resorption from senescing leaves of perennials: are there general patterns?[J]. The Journal of Ecology, 1996, 84(4): 597. DOI:10.2307/2261481. [9] KILLINGBECK K T. The terminological jungle revisited: making a case for use of the term resorption[J]. Oikos, 1986, 46(2): 263. DOI:10.2307/3565477. [10] BRANT A N, CHEN H Y H. Patterns and mechanisms of nutrient resorption in plants[J]. Critical Reviews in Plant Sciences, 2015, 34(5): 471-486. DOI:10.1080/07352689.2015.1078611. [11] MAO R, SONG C C, ZHANG X H, et al. Response of leaf, sheath and stem nutrient resorption to 7 years of N addition in fresh water wetland of Northeast China[J]. Plant Soil,2012, 364(1): 385-394. DOI:10.1007/s11104-012-1370-9. [12] FRESCHET G T, CORNELISSEN J H, VAN LOGTESTJIN R S, et al. Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits[J]. New Phytol, 2010, 186(4): 879-889. DOI:10.1111/j.1469-8137.2010.03228.x. [13] KILLINGBECK K T. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency[J]. Ecology, 1996, 77(6): 1716-1727. DOI:10.2307/2265777. [14] VERGUTZ L, MANZONI S, PORPORATO A, et al. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants[J].Ecological Monographs, 2012, 82(2): 205-220. DOI:10.1890/11-0416.1. [15] MAY J D, KILLNGBECK K T. Effects of preventing nutrient resorption on plant fitness and foliar nutrient dynamics[J]. Ecology, 1992, 73(5): 1868-1878. DOI:10.2307/1940038. [16] 邢雪荣, 韩兴国, 陈灵芝. 植物养分利用效率研究综述[J]. 应用生态学报, 2000, 11(5):785-790, DOI:10.13287/j.1001-9332.2000.0189. XING X R, HAN X G, CHEN L Z. A review on research of plant nutrient use efficiency [J]. Chinese Journal of Applied Ecology, 2000, 11(5):785-790. [17] 廖利平. 国外林木养分内循环研究 [J]. 生态学杂志, 1994(6):34-38, DOI: 10.13292/j.1000 -4890. 1994. 0091. LIAO L P. Overseas researches on within -tree nutrient cycling [J]. Chinese Journal of Ecology, 1994(6):34-38. [18] YUAN Z Y, LI L H, HAN X G, et al. Soil characteristics and nitrogen resorption in Stipa krylovii native to northern China[J]. Plant Soil, 2005, 273(1): 257-268. DOI:10.1007/s11104-004-7941-7. [19] MCGRODDY M E, DAUFRESNE T, HEDIN L O. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios[J]. Ecology, 2004, 85(9): 2390-2401. DOI:10.1890/03-0351. [20] RYAN M G, HUBBARD R M, PONGRACIC S, et al. Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status[J]. Tree Physiol, 1996, 16(3): 333-343. DOI:10.1093/treephys/16.3.333. [21] CHEN H Y H, BRASSARD B W. Intrinsic and extrinsic controls of fine root life span[J]. Critical Reviews in Plant Sciences, 2013, 32(3): 151-161. DOI:10.1080/07352689.2012.734742. [22] YUAN Z Y, CHEN H Y H. Global trends in senesced-leaf nitrogen and phosphorus[J]. Global Ecologyand Biogeography, 2009, 18(5): 532-542. DOI:10.1111/j.1466-8238.2009.00474.x. [23] ORDONEZ J C, Van BODEGOM P M, WITTE J P, et al. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply[J]. Ecology, 2010, 91(11): 3218-3228. DOI:10.1890/09-1509.1. [24] SARDANS J, PENUELAS J. Tree growth changes with climate and forest type are associated with relative allocation of nutrients, especially phosphorus, to leaves and wood[J]. Global Ecology and Biogeography, 2012, 22(4): 494-507. DOI:10.1111/geb.12015. [25] YUAN Z Y, CHEN H Y H, REICH P B. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus[J]. Nat Commun, 2011, 2: 344. DOI:10.1038/ncomms1346. [26] POORTER H, NIKLAS K J, REICH P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control[J]. New Phytol, 2012, 193(1): 30-50. DOI:10.1111/j.1469-8137.2011.03952.x. [27] Lü X T, HAN X G. Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China[J]. Plant Soil,2009, 327(1): 481-491. DOI:10.1007/s11104-009-0078-y. [28] Van HEENWAARDEN L M, TOET S, AERTS R. Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: facts and solutions[J]. Oikos, 2003, 101(3): 664-669. DOI:10.1034/j.1600-0706.2003.12351.x. [29] GUSEWELL S. Nutrient resorption of wetland graminoids is related to the type of nutrient limitation[J]. Functional Ecology, 2005, 19(2): 344-354. DOI:10.1111/j.0269-8463.2005.00967.x. [30] AERTS R, BERENDSE F. Above-ground nutrient turnover and net primary production of an evergreen and a deciduous species in a heathland ecosystem[J]. The Journal of Ecology, 1989, 77(2): 343. DOI:10.2307/2260754. [31] TANG L, HAN W, CHEN Y, et al. Resorption proficiency and efficiency of leaf nutrients in woody plants in eastern China[J].Journal of Plant Ecology, 2013, 6(5): 408-417. DOI:10.1093/jpe/rtt013. [32] GOWER S T, KRANKINA O, OISON R J, et al. Net primary production and carbon allocation patterns of boreal forest ecosystems[J]. Ecological Applications, 2001, 11(5): 1395. DOI:10.2307/3060928. [33] COSTA T L,SAMPAIO E V S B, SALES M F, et al. Root and shoot biomasses in the tropical dry forest of semi-arid Northeast Brazil[J]. Plant Soil, 2014, 378(1): 113-123. DOI:10.1007/s11104-013-2009-1. [34] RYAN M G, BINKLEY D, FOWNES J H. Age-related decline in forest productivity: pattern and process[J]. Advances in Ecological Research, 1997,27(8): 213-262. DOI:10.1016/s0065-2504(08)60009-4. [35] YUAN Z Y, CHEN H Y H. Fine root dynamics with stand development in the boreal forest[J].Functional Ecology, 2012, 26(4): 991-998. DOI:10.1111/j.1365-2435.2012.02007.x. [36] STEPHENSON N L, DAS A J, CONDIT R, et al. Rate of tree carbon accumulation increases continuously with tree size[J]. Nature, 2014, 507(7490): 90-93. DOI:10.1038/nature12914. [37] 邓浩俊, 陈爱民, 严思维,等. 不同林龄新银合欢重吸收率及其C:N:P化学计量特征 [J]. 应用与环境生物学报, 2015, 21(3): 522-527, DOI: 10.3724/SP.J.1145.2014.11032. DENG H J, CHEN A M, YAN S W, et al. Nutrient resorption efficiency and C:N:P stoichiometry in different ages of Leucaena leucocephala [J]. Chinese Journal of Applied & Environmental Biology, 2015, 21(3): 522-527. [38] 李荣华, 汪思龙, 王清奎. 不同林龄马尾松针叶凋落前后养分含量及回收特征 [J]. 应用生态学报, 2008, 19(7):1443-1447, DOI:10.13287/j.1001-9332.2008.0288. LI R H, WANG S L, WANG Q K. Nutrient contents and resorption characteristics in needles of different age Pinus massoniana Lamb. before and after withering [J]. Chinese Journal of Applied Ecology, 2008, 19(7): 1443-1447. [39] 庄亚珍. 不同林龄马尾松针叶养分含量及其再吸收效率 [J]. 安徽农学通报, 2010, 16(18):27-28, 52.DOI: 10.3969/j.issn.1007-7731.2010.18.012. ZHUANG Y Z. Nutrients and their resorption efficiencies in leaves of Pinus massoniana of different ages [J]. Anhui Agricultural Science Bulletin, 2010, 16(18): 27-28,52. [40] YUAN Z Y, CHEN H Y H. Changes in nitrogen resorption of trembling aspen(Populus tremuloides)with stand development[J]. Plant Soil, 2009, 327(1): 121-129. DOI:10.1007/s11104-009-0036-8. [41] YANG Y, LUO Y. Carbon: nitrogen stoichiometry in forest ecosystems during stand development[J]. Global Ecology and Biogeography, 2010, 20(2): 354-361. DOI:10.1111/j.1466-8238.2010.00602.x. [42] KOBE R K, LEPCZYK C A, LYER M. Resorption efficiency decreases with increasing green leaf nutrients in a global data set[J].Ecology, 2005, 86(10): 2780-2792. DOI:10.1890/04-1830. [43] LI Y, CHEN J, CUI J, et al. Nutrient resorption in Caragana microphylla along a chronosequence of plantations: implications for desertified land restoration in North China[J]. Ecological Engineering, 2013, 53: 299-305. DOI:10.1016/j.ecoleng.2012.12.061. [44] YE G F, ZHANG S J, ZHANG L H, et al. Age-related changes in nutrient resorption patterns and tannin concentration of Casuarina equisetifolia plantations[J]. Journal of Tropical Forest Science, 2012(4): 546-556. [45] YUAN Z Y, CHEN H Y H. Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation[J]. Global Ecologyand Biogeography, 2009, 18(1): 11-18. DOI:10.1111/j.1466-8238.2008.00425.x. [46] YUAN Z Y, CHEN H Y H. A global analysis of fine root production as affected by soil nitrogen and phosphorus[J]. Proc Biol Sci, 2012, 279(1743): 3796-3802. DOI:10.1098/rspb.2012.0955. [47] BOERNER R E J. Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility[J]. The Journal of Applied Ecology, 1984, 21(3): 1029. DOI:10.2307/2405065. [48] YUAN Z Y, CHEN H Y H. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes[J].Nature Climate Change, 2015, 5(5): 465-469. DOI:10.1038/nclimate2549. [49] SARDANS J, PENUELAS J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system[J]. Plant Physiol, 2012, 160(4): 1741-1761. DOI:10.1104/pp.112.208785. [50] DDLGADO-BAQUERIZO M, MAESTRE F T, GALLARDO A, et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands[J]. Nature, 2013, 502(7473): 672-676. DOI:10.1038/nature12670. [51] NORBY R J, WARREN J M, IVERSEN C M, et al. CO2 enhancement of forest productivity constrained by limited nitrogen availability[J].Proceedings of the National Academy of Sciences, 2010, 107(45): 19368-19373. DOI:10.1073/pnas.1006463107. [52] BASSIRIRAD H. Kinetics of nutrient uptake by roots: responses to global change[J]. New Phytologist, 2000, 147(1): 155-169. DOI:10.1046/j.1469-8137.2000.00682.x. [53] PENUELAS J, POULTER B, SARDANS J, et al. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe[J]. Nat Commun, 2013, 4: 2934. DOI:10.1038/ncomms3934. [54] CHAPIN Ⅲ F S, JOHNSON D A, MCKENDRICK J D. Seasonal movement of nutrients in plants of differing growth form in an Alaskan tundra ecosystem: implications for herbivory[J]. The Journal of Ecology, 1980, 68(1): 189. DOI:10.2307/2259251. [55] MAYOR J R, WRIGHT S J, TURNER B L. Species-specific responses of foliar nutrients to long-term nitrogen and phosphorus additions in a lowland tropical forest[J].J Ecol, 2013, 102(1): 36-44. DOI:10.1111/1365-2745.12190. [56] HOLUB P, TüMA I. The effect of enhanced nitrogen on aboveground biomass allocation and nutrient resorption in the fern Athyrium distentifolium[J]. Plant Ecol, 2009, 207(2): 373-380. DOI:10.1007/s11258-009-9681-5. [57] 安卓, 牛得草, 文海燕, 等. 氮素添加对黄土高原典型草原长芒草氮磷重吸收率及C:N:P化学计量特征的影响[J]. 植物生态学报, 2011, 35(8): 801-807. DOI:10.3724/SP.J.1258.2011.00801. AN Z, NIU D C, WEN H Y, et al. Effects of N addition on nutrient resorption efficiency and C:N:P stoichiometric characteristics in stipa bungeana of steppe grasslands in the loess plateau, china[J]. Chinese Journal of Plant Ecology, 2011, 35(8): 801-807. DOI:10.3724/SP.J.1258.2011.00801. [58] 赵琼, 刘兴宇, 胡亚林,等. 氮添加对兴安落叶松养分分配和再吸收效率的影响[J]. 林业科学, 2010, 46(5):14-19, DOI::1001-7488(2010)05-0014-06. ZHAO Q, LIU X Y, HU Y L, et al. Effects of nitrogen addition on nutrient allocation and nutrient resorption efficiency in Larix gmelinii[J]. Scientia Silvae Sinicae, 2010, 46(5):14-19. [59] GOODMAN R C, OLIET J A, SLOAN J L, et al. Nitrogen fertilization of black walnut(Juglans nigra L.)during plantation establishment physiology of production[J]. European Journal of Forest Research, 2013, 133(1): 153-164. DOI:10.1007/s10342-013-0754-6. [60] AGREN G I, WEIH M. Plant stoichiometry at different scales: element concentration patterns reflect environment more than genotype[J]. New Phytol, 2012, 194(4): 944-952. DOI:10.1111/j.1469-8137.2012.04114.x. [61] HAN W, TANG L, CHEN Y, et al. Relationship between the relative limitation and resorption efficiency of nitrogen vs phosphorus in woody plants[J].PLoS One, 2013, 8(12): e83366. DOI:10.1371/journal.pone.0083366. [62] SOKOLOV A P, KICKLIGHTER D W, MELILLO J M, et al. Consequences of considering carbon-nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle[J]. Journal of Climate, 2008, 21(15): 3776-3796. DOI:10.1175/2008jcli2038.1. [63] WOOD T E, LAWRENCE D, WELLS J A. Inter-specific variation in foliar nutrients and resorption of nine canopy-tree species in a secondary neotropical rain forest[J]. Biotropica, 2011(5): 544-551. DOI:10.1111/j.1744-7429.2010.00740.x. [64] MANZONI S, TROFYMOW J A, JACKSON R B, et al. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter[J].Ecological Monographs, 2010, 80(1): 89-106. DOI:10.1890/09-0179.1. [65] YUAN Z Y, LI L H, HAN X G, et al. Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China[J].Journal of Arid Environments, 2005, 63(1): 191-202. DOI:10.1016/j.jaridenv.2005.01.023. [66] GORDON W S, JACKSON R B. Nutrient concentrations in fine roots[J].Ecology, 2000, 81(1): 275-280. DOI:10.1890/0012-9658(2000)081[0275:ncifr]2.0.co; 2. [67] THORNTON P E, LAMARQUE J F, ROSENBLOOM N A, et al. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability [J]. Global Biogeochem Cycles, 2007, 21(4): DOI:10.1029/2006gb002868. |
[1] | 杨永. 裸子植物的系统分类:历史、现状和展望[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 14-26. |
[2] | 张瑞, 周正虎, 王传宽, 金鹰. 东北温带森林不同材性树种木质部解剖和水力性状[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 229-236. |
[3] | 黄永健, 荀航, 张保, 尤俊昊, 姚曦, 汤锋. HPLC同时测定竹笋中8种酚酸类物质含量的方法研究及其应用[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 237-244. |
[4] | 邓云飞. 安息香科的系统学研究进展[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 27-35. |
[5] | 李家亮, 巫大宇, 毛康珊. 柏木属的分类地位和物种多样性研究现状与建议[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 36-45. |
[6] | 李涌福, 杨庆华, 陈林, 张敏, 向其柏, 王贤荣, 段一凡. 木犀属内分组关系的分类修订[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 58-62. |
[7] | 杨皓, 刘超, 庄家尧, 张树同, 张文韬, 毛国豪. 不同载体菌肥对紫穗槐生长和光合特性及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 81-89. |
[8] | 丁咏, 刘鑫, 张金池, 王宇浩, 陈美玲, 李涛, 刘孝武, 周悦湘, 孙连浩, 廖艺. 酸雨类型转变对杉木林地土壤和细根生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 90-98. |
[9] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[10] | 卜晓婷, 付威, 李淑娴, 徐志标, 彭大庆, 徐林桥. 幼化和外源激素对娜塔栎嫩枝扦插生根的影响及其生根解剖学观察[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 129-136. |
[11] | 杜晋城, 李欣欣, 王泽亮, 刘偲, 钟毅, 王丽华. 聚乙二醇胁迫下3个油橄榄品种生理指标响应[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 137-143. |
[12] | 方静, 张书曼, 严善春, 武帅, 赵佳齐, 孟昭军. 两种丛枝菌根真菌复合接种对青山杨叶片抗美国白蛾的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 144-154. |
[13] | 张馨方, 王广鹏, 张树航, 李颖, 郭燕. 不同抗螨性板栗差异次生代谢物筛选与分析[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 234-240. |
[14] | 杨宏, 伊贤贵, 王贤荣, 吴桐, 周华近, 陈洁, 李蒙, 朱兆青. 樱花新品种‘元春’[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 275-276. |
[15] | 田梦阳, 朱树林, 窦全琴, 季艳红. 薄壳山核桃-茶间作对‘安吉白茶’速生期光合特性的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 86-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||