【目的】探明河流植物群落下的底泥中碳氮磷和重金属的积累机制。【方法】在淮河上游地区索河流域不同生境类型(浅滩区和浅水区)下分别选取3处当地优势植物扁秆藨草(Scirpus planiculmis)和黑三棱(Sparganium stoloniferum)单优势群落,采集植物群落下和对照(植物盖度<5%)0~10 cm(表层)、≥10~20 cm(中层)和≥20~30 cm(下层)处的底泥,用独立样本t检验分析植物群落下3个层次的底泥中OC(有机碳)、TN(全氮)、TP(全磷)、As、Cd、Co、Cr、Cu、Hg、Ni、Pb和Zn是否有显著富集效应,计算底泥中各元素的相对富集指数E(relative enrichment index, E),并用偏最小二乘回归(PLSR)法分析相对富集指数的影响因素。【结果】扁秆藨草和黑三棱群落下的底泥中OC、TN、As、Cd、Cr、Hg、Ni、Pb和Zn有显著富集作用,且富集作用主要发生在表层底泥。整体上,植物群落下0~30 cm深的底泥中OC、TN和各重金属的E值主要受到各元素在底泥中本底值的影响,其次为植物种类,再次为生境类型,而底泥质地对其影响相对较小。【结论】在污染河流中种植当地优势挺水植物种可以使河流中的营养元素和重金属定向转移到植物群落下的底泥中,尤其是表层底泥中。这其中的主要驱动力表现为植物对水体中颗粒物和营养物质的拦截,以及植物枯落物和死亡根系的分解及矿化。扁秆藨草可能对Cd、Cr、Hg、Pb和Zn有吸收富集作用。
						
						
						
						
						
							
Abstract
						
						
							【Objective】Investigate the mechanism of organic carbon(OC), total nitrogen(TN), total phosphorus(TP)and heavy metal(As, Cd, Co, Cr, Cu, Hg, Ni, Pb, and Zn)accumulation in sediment of plant communities in river. 【Method】We selected three sites dominated by Scirpus planiculmis and Sparganium stoloniferum each in shoal and shallow water habitats of the Suo River, a tributary of the Huai River. We collected sediment from the surface layer(0-10 cm), middle layer(≥10-20 cm)and sublayer(≥20-30 cm)of the plant communities and CK(blank control). We analyzed the accumulation of OC, TN, TP and heavy metals in the sediment of three layers using t-tests for independent samples; calculated relative enrichment index (E)of OC, TN, TP and heavy metals in the sediment of three layers; and then used partial least squares regression to analyze the influence of various factors on each element’s E.【Result】OC, TN, As, Cd, Cr, Hg, Ni, Pb and Zn were significantly enriched in sediment of the S. planiculmis and S. stoloniferum communities. The enrichment effect mainly occurred in the surface sediment. Overall, the main factors influencing the elements’ E values were the elements’ background values in the sediment, followed by plant species, habitat type, and sediment texture. 【Conclusion】The results of the present study provide a reference for the ecological restoration of polluted rivers. Planting local dominant species in polluted rivers helps transfer carbon, nutrient elements and some heavy metals from the river ecosystem into the sediment of the plant communities, especially into the surface sediment. The main driving forces may be plants’ interception of particulate matter and nutrients in the water, as well as the decomposition and mineralization of plant litter and dead roots. It is also possible that S. planiculmis can absorb Cd, Cr, Hg, Pb and Zn and that S. stoloniferum can absorb As, Cd, Cr, Hg, Ni, Pb and Zn, although this requires validation.
						
						
					
					
					
					
					
					
					
					
					
					 
					
					
					
					
					
					
					
					
						
						
						
							
								
									
{{custom_sec.title}}
								
								
									
{{custom_sec.title}}
								
								
								
								{{custom_sec.content}}
							
						 
						
						
						
						
						
						
						
							
参考文献
						
						
							[1] 国家环境保护总局科技标准司. GB 3838—2002地表水环境质量标准[S]. 北京:中国环境科学出版社, 2002. 
[2] 国家环境保护总局科技标准司. GB 15618—2008土壤环境质量标准[S]. 北京:中国环境科学出版社, 1995. 
[3] 许炼烽,邓绍龙,陈继鑫,等. 河流底泥污染及其控制与修复[J]. 生态环境学报, 2014, 23(10): 1708-1715. DOI:10.16258/j.cnki.1674-5906.2014.10.017. XU L F, DENG S L, CHEN J X, et al. River sediment pollution and its control and restoration [J]. Ecology and Environmental Sciences, 2014, 23(10): 1708-1715. 
[4] 柳敏,王如松,蒋莹,等. 原位生物技术对城市重污染河道底泥的治理效果[J]. 生态学报, 2013, 33(8): 2358-2364. DOI: 10.5846/stxb201203270424. LIU M, WANG R S, JIANG Y,et al. A case study of the effects of in-situ bioremediation on the release of pollutants from contaminated sediments in a typical, polluted urban river [J]. Acta Ecologica Sinica, 2013, 33(8): 2358-2364. 
[5] COVENEY M F, STITES D L, LOWE E F, et al. Nutrient removal from eutrophic lake water by wetland filtration[J]. Ecological Engineering, 2002, 19(2): 141-159. DOI: 10.1016/S0925-8574(2)00037-X. 
[6] 颜昌宙,金相灿,赵景柱,等. 湖滨带退化生态系统的恢复与重建[J]. 应用生态学报, 2005, 16(2): 360-364. YAN C Z, JIN X C, ZHAO J Z, et al. Ecological restoration and reconstruction of degraded lakeside zone ecosystem [J]. Chinese Journal of Applied Ecology, 2005, 16(2): 360-364. 
[7] KALFF J. 湖沼学——内陆水生态系统[Z]. 古滨河,译.北京: 高等教育出版社, 2011:297-300. 
[8] 杨长明,荆亚超,张芬,等. 泥-水界面微孔曝气对底泥重金属释放潜力的影响[J]. 同济大学学报(自然科学版), 2015, 43(1): 102-107. DOI: 10.11908/j.issn.0253-374x.2015.01.015. YANG C M, JING Y C, ZHANG F, et al. Effects of fine bubble aeration on sediment-water interface on release potential of heavy metals in the sediment from a heavily polluted urban river [J]. Journal of Tongji University(Natural Science Edition), 2015, 43(1): 102-107. 
[9] 李红霞. 河道底泥中重金属和有机物的植物去除及资源化[D]. 天津:天津大学, 2005. LI H X. Study on phytoremediation and reclamation of heavy metal and organic contamination in dredged sewage river sediment [D]. Tianjin: Tianjin University, 2005. 
[10] 郭雪莲,吕宪国,郗敏. 植物在湿地养分循环中的作用[J]. 生态学杂志, 2007, 26(10): 1628-1633. GUO X L, LV X G, XI M. Roles of plant in nutrient cycling in wetland [J]. Chinese Journal of Ecology, 2007, 26(10): 1628-1633. 
[11] 杨林章,周小平,王建国,等. 用于农田非点源污染控制的生态拦截型沟渠系统及其效果[J]. 生态学杂志, 2005, 24(11): 121-124. YANG L Z, ZHOU X P, WANG J G, et al. Ecological ditch system with interception function and its effects on controlling farmland non-point pollution [J]. Chinese Journal of Ecology, 2005, 24(11): 121-124. 
[12] COLE J J, PRAIRIE Y T, CARACO N F, et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 2007, 10(1): 172-185. DOI: 10.1007/s10021-006-9013-8. 
[13] YIN C Q, SHAN B Q. Multipond systems: a sustainable way to control diffuse phosphorus pollution[J]. AMBIO, 2001, 30(6): 369-375. DOI: 10.1639/0044-7447(2001)030[0369:MSASWT]2.0.CO; 2. 
[14] LESAGE E, ROUSSEAU D P L, MEERS E, et al. Accumulation of metals in the sediment and reed biomass of a combined constructed wetland treating domestic wastewater[J]. Water, Air, and Soil Pollution, 2007, 183(1-4): 253-264. DOI: 10.1007/s11270-007-9374-4. 
[15] VYMAZAL J. Removal of heavy metals in a horizontal sub-surface flow constructed wetland[J]. Journal of Environmental Science and Health: Part A, 2005, 40(6-7): 1369-1379. DOI: 10.1081/ESE-200055858. 
[16] 安徽植物志协作组. 安徽植物志[M]. 合肥: 安徽科学技术出版社, 1992: 386. 
[17] 丁宝章,王遂义. 河南植物志[M]. 郑州: 河南科学技术出版社, 1998: 6. 
[18] 黄昌勇.土壤学[M].北京:农业出版社,2000. 
[19] 刘凤枝,马锦秋.土壤监测分析实用手册[M].北京:化学工业出版社,2012. 
[20] 国家环境保护总局水和废水监测编委会. 水和废水监测分析方法[G]. 4版.北京: 中国环境科学出版社, 2002. 
[21] 马伟芳. 植物修复重金属—有机物复合污染河道疏浚底泥的研究[D]. 天津:天津大学, 2006. MA W F. Phytoremediation of heavy metal-organic complex in dredged sewage river sediment [D]. Tianjin: Tianjin University, 2006. 
[22] ZHUANG W, GAO X. Acid-volatile sulfide and simultaneously extracted metals in surface sediments of the southwestern coastal Laizhou Bay, Bohai Sea: concentrations, spatial distributions and the indication of heavy metal pollution status[J]. Mar Pollut Bull, 2013, 76(1-2): 128-138. DOI: 10.1016/j.marpolbul.2013.09.016. 
[23] DE JONGE M, TEUCHIES J, MEIRE P, et al. The impact of increased oxygen conditions on metal-contaminated sediments part I: effects on redox status, sediment geochemistry and metal bioavailability.[J]. Water Resource, 2012, 46(7): 2205-2214.DOI: 10.1016/j.watres.2012.01.052. 
[24] 晏丽蓉. 几种沉水植物对底泥中镉、铜、铅、锌修复作用的研究[D]. 杭州:浙江师范大学, 2013. YAN L R. The restoration effect of several kinds of submerged macrophytes on Cd, Cu, Pb, Zn in sediments of aqutic system [D]. Hangzhou: Zhejiang Normal University, 2013.
						
						
						
						
						
						
						
						
						
						
						
						
							
								
基金
							
							
								收稿日期:2016-01-09 修回日期:2016-05-16 
基金项目:国家水体污染控制与治理科技重大专项项目(2012ZX07204004); 国家自然科学基金项目(41271197,51309242) 
第一作者:王晓宇(wangxy0071@163.com)。*通信作者:刘茂松(msliu@nju.edu.cn),副教授。 
引文格式:王晓宇,盛晟,孔进,等. 河流植物群落下底泥中碳氮磷和重金属富集效应分析[J]. 南京林业大学学报(自然科学版),2017,41(2):20-26.