南京林业大学学报(自然科学版) ›› 2017, Vol. 41 ›› Issue (02): 55-62.doi: 10.3969/j.issn.1000-2006.2017.02.009
冯 凯, 侯 静, 戴晓港, 李淑娴*
出版日期:
2017-04-18
发布日期:
2017-04-18
基金资助:
FENG Kai, HOU Jing, DAI Xiaogang, LI Shuxian*
Online:
2017-04-18
Published:
2017-04-18
摘要: 【目的】确定SPL基因家族在不同物种之间的选择性保留和丢失情况,为后续研究被子植物花发育提供参考。【方法】通过在拟南芥(Arabidopsis thaliana)、毛果杨(Populus trichocarpa)、簸箕柳(Salix suchowensis)、葡萄(Vitis vinifera)、番木瓜(Carica papaya)、水稻(Oryza sativa)6种被子植物基因组中查找SPL结构域,寻找6个物种的SPL同源序列。对所找到的SPL序列进行BLASTN比对鉴定同源基因类型。使用自编Perl脚本结合KaKs_Calculator计算SPL同源基因的非同义突变(Ka)以及同义突变(Ks)值,采用共线性分析确定该基因家族的复制和扩张方式。【结果】在6种被子植物基因组中,共发现120个SPL基因。根据种内和种间旁系同源、直系同源基因以及这些同源基因选择压的计算显示:杨柳科SPL同源基因最多,共有旁系同源基因24对,直系同源基因50对; 番木瓜没有旁系同源基因。6个物种中,木本植物比草本植物直系同源基因更多,双子叶植物比单子叶植物直系同源基因更多; 所有旁系同源和直系同源基因的Ka/Ks值均小于1。系统发育树的分析结果与基因同源性分析基本吻合,证明了这两种分析方法具有较高的可靠性。此次研究选取了簸箕柳同一植株上开花和不开花的枝条进行了转录组测序分析,差异表达分析发现了1个SPL基因(willow_GLEAN_10025160)在两种枝条的转录组中表达差异显著(P≤0.01),其在开花枝条中的表达量显著高于未开花枝条,该基因被选为SPL基因家族中参与簸箕柳开花调控的候选基因。【结论】通过对6个物种SPL基因家族的分析,发现6个物种中所有直系同源和旁系同源基因都经历了纯化选择(Ka/Ks<1),基因功能保守。这6个物种除了经历过全基因组复制事件,还发生过大规模的基因丢失或者通过其他方式产生的基因扩张,阐明了它们在进化历史上的复制事件及SPL基因在不同物种中的选择性保留与丢失情况,为进一步研究其在调控簸箕柳开花中的作用提供了有力证据。
中图分类号:
冯凯,侯静,戴晓港,等. 簸箕柳SPL基因家族分析[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 55-62.
FENG Kai, HOU Jing, DAI Xiaogang, LI Shuxian. Analyzing the SPL gene family in Salix suchowensis[J].Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(02): 55-62.DOI: 10.3969/j.issn.1000-2006.2017.02.009.
[1] 徐妙云, 王磊. MicroRNA与植物花发育调控的研究进展[J]. 中国农业科技导报, 2011, 13(2): 9-16. DOI:10.3969/j.issn.1008-0864.2011.02.02 XU M Y, WANG L. Research progress on microRNAs role in controlling flower development[J]. Journal of Agricultural Science and Technology, 2011, 13(2): 9-16. [2] PARK M Y, WU G, GONZALEZ-SULSER A, et al. Nuclear processing and export of microRNAs in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2005, 102(10): 3691-3696. DOI:10.1073/pnas.0405570102. [3] FRANCO-ZORRILLA J M, VALLI A, TODESCO M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity[J]. Nature Genetics, 2007, 39(8): 1033-1037. DOI:10.1038/ng2079. [4] HUIJSER P, SCHMID M. The control of developmental phase transitions in plants[J]. Development, 2011, 138(19): 4117-4129. DOI:10.1242/dev.063511. [5] YAMAGUCHI A, ABE M. Regulation of reproductive development by non-coding RNA in Arabidopsis: to flower or not to flower[J]. Journal of Plant Research, 2012, 125(6): 693-704. DOI:10.1007/s10265-012-0513-7. [6] 黄赫, 徐启江. MicroRNA调控被子植物花发育的研究进展[J]. 植物生理学报, 2012, 48(10): 929-940. HUANG H, XU Q J.Progress in research of MicroRNA regulation on angiosperm flower development[J]. Plant Physiology Journal, 2012, 48(10): 929-940. [7] SPANUDAKIS E, JACKSON S. The role of microRNAs in the control of flowering time[J]. Journal of Experimental Botany, 2014, 65(2):365-380. DOI:10.1093/jxb/ert453. [8] YAMASAKI K, KIGAWA T, INOUE M,et al. A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SPL-family transcription factors[J]. Journal of Molecular Biology, 2004, 337(1): 49-63. DOI:10.1016/j.jmb.2004.01.015. [9] 代法国, 胡宗利, 陈国平, 等. 植物特有的SPL-box基因家族的研究进展[J]. 生命科学, 2010, 22(2): 155-160. DAI F G, HU Z L, CHEN G P,et al. Progress in the plant specific SBP-box gene family[J]. Chinese Bulletin of Life Sciences, 2010, 22(2): 155-160. [10] RHOADES M, REINHART B, LIM L,et al. Prediction of plant microRNA targets[J]. Cell, 2002, 110(4): 513-520. DOI:10.1016/S0092-8674(02)00863-2. [11] 王沙沙. 小黑杨FT-like基因的克隆、原核表达及植物超表达、RNAi表达载体的构建[D]. 哈尔滨: 东北林业大学, 2011. WANG S S. Cloning, prokaryotic expression and transformation of plant overexpression and RNAi vector of FT-like gene of Populus xiaohei[D]. Harbin: Northeast Forestry University, 2011. [12] FINN R D, CLEMENTS J, EDDY S R. HMMER web server: interactive sequence similarity searching[J]. Nucleic Acids Research, 2011, 39(8):29-37. DOI:10.1093/nar/gkr367. [13] UNTE U, SORENSEN A, PESARESI P,et al. SPL8, an SPL-box gene that affects pollen sac development in Arabidopsis[J]. The Plant Cell, 2003, 15(4): 1009-1019. DOI:10.1105/tpc.010678. [14] ALTSCHUL S, MADDEN L, SCHAFFER A,et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Reserch, 1997, 25(17): 3389-3402. DOI:10.1093/nar/25.17.3389. [15] BLANC G, WOLFE K. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes[J]. The Plant Cell, 2004, 16(7): 1667-1678. DOI:10.1105/tpc.021345. [16] EDGAR R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Research, 2004, 32(5):1792-1797. DOI:10.1093/nar/gkh340. [17] YANG Z, NIELSEN R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models[J]. Molecular Biology and Evolution, 2000, 17(1): 32-43. [18] KATOH K, KUMA K, MIYATA T,et al. Improvement in the accuracy of multiple sequence alignment program MAFFT[J]. Genome Informatics Series, 2005, 16(1): 22-33. [19] KATOH K, TOH H. Recent developments in the MAFFT multiple sequence alignment program[J]. Briefings in Bioinformatics, 2008, 9(4): 286-298. DOI:10.1093/bib/bbn013. [20] TAMURA K, PETERSON D, PETERSON N,et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739. DOI:10.1093/molbev/msr121. [21] LEE T, TANG H, WANG X,et al. PGDD: a database of gene and genome duplication in plants[J]. Nucleic Acids Research, 2013, 41(D1): 1152-1158. DOI:10.1093/nar/gks1104. [22] WANG Y, TANG H, DEBARRY J D, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Research, 2012, 40(7): e49. DOI:10.1093/nar/gkr1293. [23] LIU J, YIN T, YE N, et al. Transcriptome analysis of the differentially expressed genes in the male and female shrub willows (Salix suchowensis)[J]. Plos One, 2013, 8(4): e60181. DOI:10.1371/journal.pone.0060181. [24] CHEN Y, MAO Y, LIU H, et al. Transcriptome analysis of differentially expressed genes relevant to variegation in peach flowers[J]. PloS One, 2014, 9(3): e90842. DOI:10.1371/journal.pone.0090842. [25] ROMUALDI C, BORTOLUZZI S, D’ALESSI F, et al. IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments[J]. Physiological Genomics, 2003, 12(2): 159-162. DOI:10.1152/physiolgenomics.00096.2002 [26] YANG Z, BIELAWSKI J. Statistical methods for detecting molecular adaptation[J]. Trends in Ecology and Evolution, 2000, 15(12): 496-503. DOI:10.1016/S0169-5347(00)01994-7. [27] BLANC G, HOKAMP K, WOLFE K. A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome[J]. Genome Research, 2003, 13(2): 137-144. DOI:10.1101/gr.751803. [28] TANG H, WANG X, BOWERS J E, et al. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps[J]. Genome Research, 2008, 18(12):1944-1954. DOI:10.1101/gr.080978.108. [29] TANG H, BOWERS J E, WANG X, et al. Synteny and collinearity in plant genomes[J]. Science, 2008, 320(5875):486-8. DOI:10.1126/science.1153917. [30] DAI X, HU Q, CAI Q, et al. The willow genome and divergent evolution from poplar after the common genome duplication[J]. Cell Research, 2014, 24(10):1274-1277. DOI:10.1038/cr.2014.83. [31] INITIATIVE A G. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408(6814):796-815. DOI:10.1038/35048692. [32] JAILLON O, AURY J M, NOEL B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J]. Nature, 2007, 449(7161):463-467. DOI:10.1038/nature06148. [33] MING R, HOU S, FENG Y, et al. The draft genome of the transgenic tropical fruit tree papaya(Carica papaya Linnaeus)[J]. Nature, 2008, 452(7190):991-996. DOI:10.1038/nature06856. [34] GUO L, CHEN Y, YE N, et al. Differential retention and expansion of the ancestral genes associated with the paleopolyploidies in modern rosid plants, as revealed by analysis of the extensins super-gene family[J]. BMC Genomics, 2014, 15(1): 612. DOI:10.1186/1471-2164-15-612. |
[1] | 杨永. 裸子植物的系统分类:历史、现状和展望[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 14-26. |
[2] | 张瑞, 周正虎, 王传宽, 金鹰. 东北温带森林不同材性树种木质部解剖和水力性状[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 229-236. |
[3] | 黄永健, 荀航, 张保, 尤俊昊, 姚曦, 汤锋. HPLC同时测定竹笋中8种酚酸类物质含量的方法研究及其应用[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 237-244. |
[4] | 邓云飞. 安息香科的系统学研究进展[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 27-35. |
[5] | 李家亮, 巫大宇, 毛康珊. 柏木属的分类地位和物种多样性研究现状与建议[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 36-45. |
[6] | 李涌福, 杨庆华, 陈林, 张敏, 向其柏, 王贤荣, 段一凡. 木犀属内分组关系的分类修订[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 58-62. |
[7] | 杨皓, 刘超, 庄家尧, 张树同, 张文韬, 毛国豪. 不同载体菌肥对紫穗槐生长和光合特性及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 81-89. |
[8] | 丁咏, 刘鑫, 张金池, 王宇浩, 陈美玲, 李涛, 刘孝武, 周悦湘, 孙连浩, 廖艺. 酸雨类型转变对杉木林地土壤和细根生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 90-98. |
[9] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[10] | 卜晓婷, 付威, 李淑娴, 徐志标, 彭大庆, 徐林桥. 幼化和外源激素对娜塔栎嫩枝扦插生根的影响及其生根解剖学观察[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 129-136. |
[11] | 杜晋城, 李欣欣, 王泽亮, 刘偲, 钟毅, 王丽华. 聚乙二醇胁迫下3个油橄榄品种生理指标响应[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 137-143. |
[12] | 方静, 张书曼, 严善春, 武帅, 赵佳齐, 孟昭军. 两种丛枝菌根真菌复合接种对青山杨叶片抗美国白蛾的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 144-154. |
[13] | 张馨方, 王广鹏, 张树航, 李颖, 郭燕. 不同抗螨性板栗差异次生代谢物筛选与分析[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 234-240. |
[14] | 杨宏, 伊贤贵, 王贤荣, 吴桐, 周华近, 陈洁, 李蒙, 朱兆青. 樱花新品种‘元春’[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 275-276. |
[15] | 田梦阳, 朱树林, 窦全琴, 季艳红. 薄壳山核桃-茶间作对‘安吉白茶’速生期光合特性的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 86-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||