水泥改良土融沉对地层位移场影响的数值分析

王效宾,杨平,胡俊

南京林业大学学报(自然科学版) ›› 2017, Vol. 41 ›› Issue (02) : 136-142.

PDF(2765021 KB)
PDF(2765021 KB)
南京林业大学学报(自然科学版) ›› 2017, Vol. 41 ›› Issue (02) : 136-142. DOI: 10.3969/j.issn.1000-2006.2017.02.020
研究论文

水泥改良土融沉对地层位移场影响的数值分析

  • 王效宾1,杨 平2*,胡 俊2
作者信息 +

Numerical analysis of the influence of cemented soil thawing settlement on the stratum displacement field

  • WANG Xiaobin1, YANG Ping2*, HU Jun2
Author information +
文章历史 +

摘要

【目的】分析水泥改良土融沉对地层位移场的影响规律,为水泥土改良冻结法应用于城市地下工程提供理论基础。【方法】以南京地铁10号线盾构出洞水平冻结加固工程为研究对象,采用三维数值模拟方法对水泥改良土融沉引起的地层位移进行了分析,采用单因素分析法,分析了融沉系数、覆土厚度、冻土壁尺寸对融沉位移场的影响规律。【结果】冻结区土体未经水泥土改良时,地表最大融沉量为12.811 cm; 水泥掺入比为12%时,地表最大融沉量为1.521 cm,表明水泥的掺入可明显减小冻土融沉。【结论】水泥土融沉时,土层越深,融沉位移越大,融沉范围越小; 地表融沉位移呈盆状沉降面,最大沉降位于出洞口处,随融沉系数增加,地表最大融沉量逐渐增大,但地层沉降分布规律不变; 覆土厚度越大,地表融沉量越小; 冻土壁尺寸增加时,地表位移发展速度变缓,地表沉降时间延长,最终融沉量增大。

Abstract

【Objective】 Research on the influence of cemented soil thawing settlement on the stratum displacement field can provide a theoretical basis for the application of cemented soil freezing methods in urban underground engineering. 【Method】Taking the shield tunneling horizontal freezing reinforcement project in Nanjing metro line 10 as an example, a 3-D numerical simulation analysis is conducted on the stratum displacement field caused by the cemented soil thawing settlement. The effect of the thaw settlement coefficient, thickness of the covering soil, and size of the frozen soil wall on the cemented soil displacement field are studied using the single factor analysis. It was found from research that the amount of maximum surface thawing settlement is 12.811 cm as the frozen soil had not improved; when the cement-mixed ratio is increased to 12%, the maximum surface thawing settlement amount reduces to 1.521 cm, revealing that mixing of cement can significantly decrease the thawing settlement of the frozen soil. 【Conclusion】 In the freezing thawing settlement of the cement soil, the deeper the soil is, the larger the thawing settlement displacement is and the smaller the thawing settlement range is. The surface thaw displacement shows a basin shaped settlement, with the maximum settlement displacement located at the outlet. With the increase in the thawing settlement coefficient, the amount of maximum surface settlement increases gradually, but the soil displacement distribution does not change; the larger the covering soil thickness, the smaller is the surface settlement. When the frozen wall size is increased, the rate of development of surface displacement decreases; thus, the surface settlement time increases, and finally the thaw displacement increases.

引用本文

导出引用
王效宾,杨平,胡俊. 水泥改良土融沉对地层位移场影响的数值分析[J]. 南京林业大学学报(自然科学版). 2017, 41(02): 136-142 https://doi.org/10.3969/j.issn.1000-2006.2017.02.020
WANG Xiaobin, YANG Ping, HU Jun. Numerical analysis of the influence of cemented soil thawing settlement on the stratum displacement field[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2017, 41(02): 136-142 https://doi.org/10.3969/j.issn.1000-2006.2017.02.020
中图分类号: U456   

参考文献

[1] 徐泽民,韩庆华,郑刚.天津地铁盾构接收水平冻结实测与分析[J].建筑结构,2012,42(11):132-135. XU Z M,HAN Q H,ZHENG G. Field monitoring and analysis of horizontal freezing method for shield received in Tianjin metro tunnels[J]. Building Structure,2012,42(11):132-135.
[2] 张婷,杨平.不同因素对浅表土冻结温度的影响[J].南京林业大学学报(自然科学版),2009,33(4):132-134. ZHANG T,YANG P. Effect of different factors on the freezing temperature of shallow top soil [J]. Journal of Nanjing Forestry University(Natural Science Edition),2009,33(4):132-134.
[3] 张向东,刘家顺,张建俊,等. 地铁联络通道人工冻结粉质粘土变形与温度特性试验研究[J].公路交通科技,2013,30(5):74-81.DOI:10.3969/j.issn.1002-0268.2013.05.013. ZHANG X D,LIU J S,ZHANG J J, et al.Experimental research on relation between deformation and temperature characteristics of artificial frozen silty clay of cross passage of metro tunnel[J].Journal of Highway and Transportation Research and Development,2013,30(5):74-81.
[4] 秦爱芳,张亚,施昱而.上海地铁隧道旁通道人工冻结法施工对周围环境的影响[J].四川建筑科学研究,2013,39(4): 180-185. DOI:10.3969/j.issn.1008-1933.2013.04042. QIN A F,ZHANG Y,SHI Y E. The affection of artificial freezing method construction to the surrouding environment to the subway tunnel in the soft soil area[J].Sichuan Building Science,2013,39(4):180-185.
[5] 王效宾,杨平,张婷.人工冻土融沉特性试验研究[J].南京林业大学学报(自然科学版),2008,32(4):108-112. DOI:10.3969/j.issn.1000-2006.2008.04.025. WANG X B,YANG P,ZHANG T.Study on thaw settlement behaviour of artificial freezing soil[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2008,32(4):108-112.
[6] HU J,YANG P, DONG C W,et al. Study on numerical simulation of cup-shaped horizontal freezing reinforcement project near shield launching[C]//2011 International Conference on Electric Technology and Civil Engineering(ICETCE). China: IEEE, 2011,4:5522-5525.
[7] 岳丰田,张水宾,李文勇,等.地铁联络通道冻结加固融沉注浆研究[J].岩土力学,2008,29(8):2283-2286. DOI:10.3969/j.issn.1000-7598.2008.08.049. YUE F T, ZHANG S B, LI W Y, et al. Study on thaw settlement grouting applied to connected aisle construction with artificial ground freezing method in metro tunnel[J]. Rock and Soil Mechanics, 2008, 29(8): 2283-2286.
[8] 梁波,张贵生,刘德仁.冻融循环条件下土的融沉性质试验研究[J].岩土工程学报,2006,28(10):1213-1217. DOI:10.3321/j.issn:1000-4548.2006.10.007. LIANG B, ZHANG G S, LIU D R. Experimental study on thawing subsidence characters of permafrost under frost heaving and thawing circulation[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1213-1217.
[9] 鲍俊安,杨平,王许诺. 水泥土冻胀特性试验研究[J].郑州大学学报(工学版),2013,34(1):5-9. DOI:10.3969/j.issn.1671-6833.2013.01.002. BAO J A, YANG P, WANG X N. Experimental study on frost heave properties of cement-improved soil[J].Journal of Zhengzhou University(Engineering Science), 2013, 34(1): 5-9.
[10] 吴礼舟,许强,黄润秋.非饱和黏土的冻胀融沉过程分析[J]. 岩土力学,2011,32(4):1025-1028. DOI:10.3969/j.issn.1000-7598.2011.04.012. WU L Z,XU Q,HUANG R Q. Analysis of freezing-thawing test process of unsaturated clay[J].Rock and Soil Mechanics,2011,32(4):1025-1028.
[11] 王许诺,杨平,彭玉龙.水泥土冻结温度及热物理参数试验研究[J].武汉理工大学学报,2012,34(6):96-100. DOI:10.3963/j.issn.1671-4431.2012.06.020. WANG X N, YANG P, PENG Y L. Test research to freezing point and the thermal physical parameters of freezing cement soil[J]. Journal of Wuhan University of Technology, 2012, 34(6): 96-100.
[12] 胡俊. 水泥改良前后土体冻结温度及力学特性试验研究[J].铁道建筑,2013(4):156-159. HU J.Experimental study on freezing temperature and mechanical performance of soil before and after cement-improving[J].Railway Engineering,2013(4):156-159.
[13] 王天亮,刘建坤,田亚护.水泥及石灰改良土冻融循环后的动力特性研究[J].岩土工程学报,2010,32(11):1733-1737. WANG T L,LIU J K,TIAN Y H. Dynamic properties of cement-and lime-improved soil subjected to freeze-thaw cycles[J].Chinese Journal of Geotechnical Engineering,2010,32(11):1733-1737.
[14] 赵世运,杨彦克,李福海, 等.高速铁路路基冻胀特性水泥掺入的改性研究[J].铁道学报,2014, 36(5):71-75. DOI:10.3969/j.issn.1001-8360.2014.05.012. ZHAO S Y, YANG Y K, LI F H, et al. Research on cement-modified frost heave characteristics of high-speed railway subgrade[J]. Journal of the China Railway Society, 2014, 36(5): 71-75.
[15] 鲍俊安,杨平,张翔宇.水泥土融沉特性的试验研究[J].南京林业大学学报(自然科学版),2013,37(5):97-102. DOI:10.3969/j.issn.1000-2006.2013.03.22. BAO J A, YANG P, ZHANG X Y. Experimental study on thaw subsidence properties of cement-improved soil[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(5): 97-102.

基金

收稿日期:2015-11-27 修回日期:2016-10-08
基金项目:住房和城乡建设部科技项目(2016-K5-060); 国家自然科学基金项目(51278251)
第一作者:王效宾(wangxiaobin3040245@163.com),副教授。*通信作者:杨平(yangping@njfu.edu.cn),教授。
引文格式:王效宾,杨平,胡俊. 水泥改良土融沉对地层位移场影响的数值分析[J]. 南京林业大学学报(自然科学版),2017,41(2):136-142.

PDF(2765021 KB)

Accesses

Citation

Detail

段落导航
相关文章

/