[1] WACKER J P. Wood handbook: wood as an engineering material[M]. Centennial Edition. Madison, Wisconsin: United State Department of Agriculture Forest Service, 2010. [2] MATTOS B D, LOURENCON T V, SERRANO L, et al. Chemical modification of fast-growing eucalyptus wood[J]. Wood Science and Technology, 2014, 49(2): 273-288. DOI:10.1007/s00226-014-0690-8. [3] KAJITA H, FURUNO T, IMAMURA Y. The modification of wood by treatment with low molecular weight phenol-formaldehyde resin: a properties enhancement with neutralized phenolic-resin and resin penetration into wood cell walls[J]. Wood Science and Technology, 2004, 37(5): 349-361. DOI:10.1007/s00226-003-0176-6. [4] XIE Y, FU Q, WANG Q, et al. Effects of chemical modification on the mechanical properties of wood[J]. European Journal of Wood and Wood Products, 2013, 71(4): 401-416. DOI:10.1007/s00107-013-0693-4. [5] MATSUNAGA H, KIGUCHI M, EVANS P D. Microdistribution of copper-carbonate and iron oxide nanoparticles in treated wood[J]. Journal of Nanoparticle Research, 2008, 11(5): 1087-1098. DOI:10.1007/s11051-008-9512-y. [6] HILL C A S. Wood modification: chemical, thermal and other processes[M]. Wales, Chichester: John Wiley & Sons Ltd., 2006. [7] CLOUTIER A, FORTIN Y. Moisture content-water potential relationship of wood from saturated to dry conditions[J]. Wood Science and Technology, 1991, 25(4):263-280. DOI:10.1007/bf00225466. [8] BABIAK M, KDELA J. A contribution to the definition of the fiber saturation point[J]. Wood Science and Technology, 1995, 29(3):217-226. DOI:10.1007/bf00204589. [9] WESTPHAL H, SURHOLT I, KIESL C, et al. NMR measurements in carbonate rocks: problems and an approach to a solution[J]. Pure and Applied Geophysics, 2005, 162(3): 549-570. DOI:10.1007/s00024-004-2621-3. [10] TIAN H, WEI C, WEI H, et al. An NMR-based analysis of soil-water characteristics[J]. Applied Magnetic Resonance, 2013, 45(1): 49-61. DOI:10.1007/s00723-013-0496-0. [11] KOTECHA M, VEEMAN W, ROHE B, et al. NMR investigations of silane-coated nano-sized ZnO particles[J].Microporous and Mesoporous Materials, 2006, 95(1): 66-75. DOI:10.1016/j.micromeso.2006.04.017. [12] MAUNU S L. NMR studies of wood and wood products[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2002, 40(2): 151-174. DOI:10.1016/s0079-6565(01)00041-3. [13] MENON R S, MACKAY A L, HAILEY J R T, et al. An NMR determination of the physiological water distribution in wood during drying[J]. Journal of Applied Polymer Science, 1987, 33(4): 1141-1155. DOI:10.1002/app.1987.070330408. [14] ARAUJO C D, MACKAY A L, HAILEY J R T, et al. Proton magnetic resonance techniques for characterization of water in wood: application to white spruce[J]. Wood Science and Technology, 1992, 26(2):101-113. DOI:10.1007/bf00194466. [15] ALMEIDA G, GAGEÉS, HERNÁNDEZ R E. A NMR study of water distribution in hardwoods at several equilibrium moisture contents[J]. Wood Science and Technology, 2006, 41(4): 293-307. DOI:10.1007/s00226-006-0116-3. [16] TELKKI V V, YLINIEMI M, JOKISAARI J. Moisture in softwoods: fiber saturation point, hydroxyl site content, and the amount of micropores as determined from NMR relaxation time distributions[J]. Holzforschung, 2013, 67(3):291-300. DOI:10.1515/hf-2012-0057. [17] AKSNES DW, KIMTYS L. 1H and 2H NMR studies of benzene confined in porous solids: melting point depression and pore size distribution[J]. Solid State Nuclear Magnetic Resonance, 2004, 25(1/2/3): 146-152. DOI:10.1016/j.ssnmr.2003.03.001. [18] PARK S, VENDITTI R, JAMEEL H, et al. Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry[J]. Carbohydrate Polymers, 2006, 66(1): 97-103. DOI:10.1016/j.carbpol.2006.02.026. [19] ZAUER M, KRETZSCHMAR J, GROßMANN L, et al. Analysis of the pore-size distribution and fiber saturation point of native and thermally modified wood using differential scanning calorimetry[J]. Wood Sci Technol, 2014, 48(1): 177-193. DOI:10.1007/s00226-013-0597-9. [20] SIMPSON L, BARTON A F M. Determination of the fibre saturation point in whole wood using differential scanning calorimetry[J]. Wood Science and Technology, 1991, 25(4):301-308. DOI:10.1007/bf00225469. [21] WALKER J C F. Primary wood processing principles and practice[M]. Second Edition. New Zealand, Christchurch: University of Canterbury, Springer, 2006. [22] OLEK W, MAIKI J, CZAJKOWSKI L. Sorption isotherms of thermally modified wood[J]. Holzforschung, 2013, 67(2):183-191. DOI:10.1515/hf-2011-0260. [23] KEKKONEN P M, YLISASSI A, TELKKI V V. Absorption of water in thermally modified pine wood as studied by nuclear magnetic resonance[J]. The Journal of Physical Chemistry: C, 2014, 118(4): 2146-2153. DOI:10.1021/jp411199r. [24] 廖广志, 肖立志, 谢然红, 等. 孔隙介质核磁共振弛豫测量多指数反演影响因素研究[J]. 地球物理学报, 2007, 50(3): 932-938. DOI:10.3321/j.issn:0001-5733.2007.03.036. LIAO G Z, XIAO L Z, XIE R H, et al. Influence factors of multi-exponential inversion of NMR relaxation measurement in porous media[J]. Chinese Journal of Geophysics, 2007, 50(3): 932-938. [25] 王忠东, 肖立志, 刘堂宴. 核磁共振弛豫信号多指数反演新方法及其应用[J]. 中国科学:G辑, 2003, 33(4): 323-332. DOI:10.3969/j.issn.1674-7275.2003.04.003. WANG Z D, XIAO L Z, LIU T Y. The new methods and its applications of index inversion in nuclear magnetic resonance relaxation signal[J]. Science in China:Series G, 2003, 33(4): 323-332. [26] 谭成勋, 刘伟, 王雅静, 等. CONTIN算法及其在测量微凝胶颗粒粒度分布中的应用[J]. 光散射学报, 2015, 27(1): 29-34. DOI:10.13883/j.issn1004-5929.201501007. TAN C X, LIU W, WANG Y J, et al. The contin algorithm for particle sizing in microgel suspensions[J].Chinese Journal of Light Scattering, 2015, 27(1): 29-34. [27] 周小龙, 聂生东, 王远军, 等. 核磁共振二维谱反演技术综述[J]. 波谱学杂志, 2013, 30(2): 293-305.DOI:10.3969/j.issn.1000-4556.2013.02.014. ZHOU X L, NIE S D, WANG Y J, et al. A review on the inversion methods in 2d NMR[J]. Chinese Journal of Magnetic Resonance, 2013, 30(2): 293-305. [28] KOLLMANN F F P, KUENZI E W, STAMM A J. Adhesion and adhesives for wood[G]// Principles of Wood Science and Technology. Berlin Heidelberg: Springer, 1975:1-93. [29] STONE J E, SCALLAN A M. Structural model for the cell wall of water-swollen wood pulp fibers based on their accessibility to macromolecules[J]. Cellulose Chem Technol, 1968, 2(1): 343-358. [30] WALLSTRÖM L, LINDBERG K A H. Measurement of cell wall penetration in wood of water-based chemicals using SEM/EDS and STEM/EDS technique[J]. Wood Science and Technology, 1999, 33(2): 111-122. DOI:10.1007/s002260050103. |