【Objective】 The purpose of this study was to determine the bound water content and pore size diameter distribution in the swollen cell walls of two fast-growing trees(Cunninghamia lanceolata(Chinese fir)and poplar)using nuclear magnetic resonance(NMR)cryoporometry. The results should be valuable in the selection of particle size for wood modification. 【Method】The T2 signal amplification of specimens at normal temperature and different frozen temperatures was compared to avoid the phenomenon that bound water content is lower than the theoretical value determined by T2 relaxation distributions at normal temperature. The maximum moisture content and pore size diameter distributions of the swollen cell wall were determined from the total signals of samples according to the Gibbs-Thomson equation, and inversion calculations were omitted. 【Results】 The saturated bound water content of Chinese fir and poplar was approximately 38%, which was clearly higher than the fiber saturation point(approximately 30%)measured by the extrapolation method, but was in accordance with solute exclusion, porous plate and centrifugal methods. The proportion of pore diameters smaller than 1.59 nm was approximately 75%, and the proportion of pore diameters larger than 4.56 nm was below 6%; this result was also in accordance with solute exclusion and spectral methods. 【Conclusion】 The bound water content and pore size diameter distributions of the cell wall could be conveniently and accurately determined by NMR cryoporometry, which could be used in the selection of modification agents and evaluation of modification effects.
GAO Xin, CAI Jiabin, JIN Juwan, ZHUANG Shouzeng.
Bound water content and pore size diameter distribution in swollen cell walls determined by NMR cryoporometry[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2017, 41(02): 150-156 https://doi.org/10.3969/j.issn.1000-2006.2017.02.022
中图分类号:
S781.3
Q482.532
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WACKER J P. Wood handbook: wood as an engineering material[M]. Centennial Edition. Madison, Wisconsin: United State Department of Agriculture Forest Service, 2010. [2] MATTOS B D, LOURENCON T V, SERRANO L, et al. Chemical modification of fast-growing eucalyptus wood[J]. Wood Science and Technology, 2014, 49(2): 273-288. DOI:10.1007/s00226-014-0690-8. [3] KAJITA H, FURUNO T, IMAMURA Y. The modification of wood by treatment with low molecular weight phenol-formaldehyde resin: a properties enhancement with neutralized phenolic-resin and resin penetration into wood cell walls[J]. Wood Science and Technology, 2004, 37(5): 349-361. DOI:10.1007/s00226-003-0176-6. [4] XIE Y, FU Q, WANG Q, et al. Effects of chemical modification on the mechanical properties of wood[J]. European Journal of Wood and Wood Products, 2013, 71(4): 401-416. DOI:10.1007/s00107-013-0693-4. [5] MATSUNAGA H, KIGUCHI M, EVANS P D. Microdistribution of copper-carbonate and iron oxide nanoparticles in treated wood[J]. Journal of Nanoparticle Research, 2008, 11(5): 1087-1098. DOI:10.1007/s11051-008-9512-y. [6] HILL C A S. Wood modification: chemical, thermal and other processes[M]. Wales, Chichester: John Wiley & Sons Ltd., 2006. [7] CLOUTIER A, FORTIN Y. Moisture content-water potential relationship of wood from saturated to dry conditions[J]. Wood Science and Technology, 1991, 25(4):263-280. DOI:10.1007/bf00225466. [8] BABIAK M, KDELA J. A contribution to the definition of the fiber saturation point[J]. Wood Science and Technology, 1995, 29(3):217-226. DOI:10.1007/bf00204589. [9] WESTPHAL H, SURHOLT I, KIESL C, et al. NMR measurements in carbonate rocks: problems and an approach to a solution[J]. Pure and Applied Geophysics, 2005, 162(3): 549-570. DOI:10.1007/s00024-004-2621-3. [10] TIAN H, WEI C, WEI H, et al. An NMR-based analysis of soil-water characteristics[J]. Applied Magnetic Resonance, 2013, 45(1): 49-61. DOI:10.1007/s00723-013-0496-0. [11] KOTECHA M, VEEMAN W, ROHE B, et al. NMR investigations of silane-coated nano-sized ZnO particles[J].Microporous and Mesoporous Materials, 2006, 95(1): 66-75. DOI:10.1016/j.micromeso.2006.04.017. [12] MAUNU S L. NMR studies of wood and wood products[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2002, 40(2): 151-174. DOI:10.1016/s0079-6565(01)00041-3. [13] MENON R S, MACKAY A L, HAILEY J R T, et al. An NMR determination of the physiological water distribution in wood during drying[J]. Journal of Applied Polymer Science, 1987, 33(4): 1141-1155. DOI:10.1002/app.1987.070330408. [14] ARAUJO C D, MACKAY A L, HAILEY J R T, et al. Proton magnetic resonance techniques for characterization of water in wood: application to white spruce[J]. Wood Science and Technology, 1992, 26(2):101-113. DOI:10.1007/bf00194466. [15] ALMEIDA G, GAGEÉS, HERNÁNDEZ R E. A NMR study of water distribution in hardwoods at several equilibrium moisture contents[J]. Wood Science and Technology, 2006, 41(4): 293-307. DOI:10.1007/s00226-006-0116-3. [16] TELKKI V V, YLINIEMI M, JOKISAARI J. Moisture in softwoods: fiber saturation point, hydroxyl site content, and the amount of micropores as determined from NMR relaxation time distributions[J]. Holzforschung, 2013, 67(3):291-300. DOI:10.1515/hf-2012-0057. [17] AKSNES DW, KIMTYS L. 1H and 2H NMR studies of benzene confined in porous solids: melting point depression and pore size distribution[J]. Solid State Nuclear Magnetic Resonance, 2004, 25(1/2/3): 146-152. DOI:10.1016/j.ssnmr.2003.03.001. [18] PARK S, VENDITTI R, JAMEEL H, et al. Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry[J]. Carbohydrate Polymers, 2006, 66(1): 97-103. DOI:10.1016/j.carbpol.2006.02.026. [19] ZAUER M, KRETZSCHMAR J, GROßMANN L, et al. Analysis of the pore-size distribution and fiber saturation point of native and thermally modified wood using differential scanning calorimetry[J]. Wood Sci Technol, 2014, 48(1): 177-193. DOI:10.1007/s00226-013-0597-9. [20] SIMPSON L, BARTON A F M. Determination of the fibre saturation point in whole wood using differential scanning calorimetry[J]. Wood Science and Technology, 1991, 25(4):301-308. DOI:10.1007/bf00225469. [21] WALKER J C F. Primary wood processing principles and practice[M]. Second Edition. New Zealand, Christchurch: University of Canterbury, Springer, 2006. [22] OLEK W, MAIKI J, CZAJKOWSKI L. Sorption isotherms of thermally modified wood[J]. Holzforschung, 2013, 67(2):183-191. DOI:10.1515/hf-2011-0260. [23] KEKKONEN P M, YLISASSI A, TELKKI V V. Absorption of water in thermally modified pine wood as studied by nuclear magnetic resonance[J]. The Journal of Physical Chemistry: C, 2014, 118(4): 2146-2153. DOI:10.1021/jp411199r. [24] 廖广志, 肖立志, 谢然红, 等. 孔隙介质核磁共振弛豫测量多指数反演影响因素研究[J]. 地球物理学报, 2007, 50(3): 932-938. DOI:10.3321/j.issn:0001-5733.2007.03.036. LIAO G Z, XIAO L Z, XIE R H, et al. Influence factors of multi-exponential inversion of NMR relaxation measurement in porous media[J]. Chinese Journal of Geophysics, 2007, 50(3): 932-938. [25] 王忠东, 肖立志, 刘堂宴. 核磁共振弛豫信号多指数反演新方法及其应用[J]. 中国科学:G辑, 2003, 33(4): 323-332. DOI:10.3969/j.issn.1674-7275.2003.04.003. WANG Z D, XIAO L Z, LIU T Y. The new methods and its applications of index inversion in nuclear magnetic resonance relaxation signal[J]. Science in China:Series G, 2003, 33(4): 323-332. [26] 谭成勋, 刘伟, 王雅静, 等. CONTIN算法及其在测量微凝胶颗粒粒度分布中的应用[J]. 光散射学报, 2015, 27(1): 29-34. DOI:10.13883/j.issn1004-5929.201501007. TAN C X, LIU W, WANG Y J, et al. The contin algorithm for particle sizing in microgel suspensions[J].Chinese Journal of Light Scattering, 2015, 27(1): 29-34. [27] 周小龙, 聂生东, 王远军, 等. 核磁共振二维谱反演技术综述[J]. 波谱学杂志, 2013, 30(2): 293-305.DOI:10.3969/j.issn.1000-4556.2013.02.014. ZHOU X L, NIE S D, WANG Y J, et al. A review on the inversion methods in 2d NMR[J]. Chinese Journal of Magnetic Resonance, 2013, 30(2): 293-305. [28] KOLLMANN F F P, KUENZI E W, STAMM A J. Adhesion and adhesives for wood[G]// Principles of Wood Science and Technology. Berlin Heidelberg: Springer, 1975:1-93. [29] STONE J E, SCALLAN A M. Structural model for the cell wall of water-swollen wood pulp fibers based on their accessibility to macromolecules[J]. Cellulose Chem Technol, 1968, 2(1): 343-358. [30] WALLSTRÖM L, LINDBERG K A H. Measurement of cell wall penetration in wood of water-based chemicals using SEM/EDS and STEM/EDS technique[J]. Wood Science and Technology, 1999, 33(2): 111-122. DOI:10.1007/s002260050103.