南京林业大学学报(自然科学版) ›› 2018, Vol. 42 ›› Issue (04): 89-96.doi: 10.3969/j.issn.1000-2006.201702035
王 静1,朱 嵊2,李佳慧1,张 丽1,张 萌1,姜立波1*,黄敏仁2,邬荣领1
出版日期:
2018-07-27
发布日期:
2018-07-27
基金资助:
WANG Jing1, ZHU Sheng2, LI Jiahui1, ZHANG Li1, ZHANG Meng1, JIANG Libo1*, HUANG Minren2, WU Rongling1
Online:
2018-07-27
Published:
2018-07-27
摘要: 【目的】传统复合性状的QTL(quantitative trait locus)定位方法仅仅利用两个或几个构成性状的计算值作为表型值,未考虑复合性状的生物学内涵,从而影响定位的准确性。因此,发展适合于复合性状的QTL定位模型,对于深入解析控制复合性状的遗传结构,进而提高基因定位准确性显得越来越重要。【方法】针对全基因组重测序数据,构建了一个复合性状QTL定位模型(composite traits mapping model, CTM),利用CTM对复合性状进行分解,把分解后的组分以二元或多元正态分布形式整合到QTL作图的框架内。【结果】应用CTM分析杨树材积生长数据,可成功定位到大量与杨树材积生长相关的基因,并与传统方法进行了比较,定位出较多的显著位点,表现出较好的性能。计算机模拟试验表明,所构建的CTM模型在定位复合性状QTL中具有较高的效力,在达到一定的样本数量和遗传力条件下,CTM模型具有较强的效力,样本量和遗传力的增加都能够增加参数估计的精度。【结论】CTM模型有助于复合性状遗传结构的解析,促进林木分子标记辅助育种的开展。
中图分类号:
王静,朱嵊,李佳慧,等. 复合性状的QTL定位模型构建[J]. 南京林业大学学报(自然科学版), 2018, 42(04): 89-96.
WANG Jing, ZHU Sheng, LI Jiahui, ZHANG Li, ZHANG Meng, JIANG Libo, HUANG Minren, WU Rongling. Computational framework for mapping composite traits[J].Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(04): 89-96.DOI: 10.3969/j.issn.1000-2006.201702035.
[1] ANDERSON J T, WAGNER M R, RUSHWORTH C A, et al. The evolution of quantitative traits in complex environments[J]. Heredity, 2014, 112(1):4-12.
[2] 莫惠栋. 数量性状遗传基础研究的回顾与思考——后基因组时代数量遗传领域的挑战[J]. 扬州大学学报(农业与生命科学版), 2003, 24(2):24-31. DOI:10.3969/j.issn.1671-4652.2003.02.007. MO H D. Look back and reflect on genetic researches of variation for quantitative traits—a challenge for quantitative genetics in post-genome era[J]. Journal of Yangzhou University(Agricultural and Life Sciences Edition), 2003, 24(2):24-31. [3] SLATE J. From beavis to beak color: a simulation study to examine how much QTL mapping can reveal about the genetic architecture of quantitative traits[J]. Evolution, 2013, 67(5):1251-1262. [4] LAMDER E S, BOTSTEIN D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 1989, 121(1):185-199. [5] 童春发. 林木遗传图谱构建和QTL定位的统计方法[J]. 南京林业大学学报(自然科学版), 2004, 28(1):109. DOI:10.3969/j.issn.1000-2006.2004.01.029. TONG C F. Statistical methods for nstructing genetic linkage maps and mapping QTLs in forest trees[J]. Iournal of Naniing Forestry University(Natural Sciences Edition), 2004, 28(1):109. [6] KAO C H, ZENG Z B, TEASDALE R D. Multiple interval mapping for quantitative trait loci [J]. Genetics, 1999, 152(3):1203-1216. [7] WU R, LIN M. Functional mapping-how to map and study the genetic architecture of dynamic complex traits[J]. Nature Reviews Genetics, 2006, 7(3):229-237. [8] HIRSCHHORN J N, DALY M J. Genome-wide association studies for common diseases and complex traits[J]. Nature Reviews Genetics, 2005, 6(2): 95-108. [9] 吕洪超, 张瑞杰, 姜永帅,等. 全基因组数据分析软件PLINK在统计遗传学教学中的应用[J]. 科学中国人,2016(30):27-30. [10] YU J, PRESSOIR G, BRIGGS W H, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness[J]. Nature Genetics, 2006, 38(2): 203-208. [11] KLASEN J R, BARBEZ E, MEIER L, et al. A multi-marker association method for genome-wide association studies without the need for population structure correction[J]. Nature Communications, 2016(7): 13299. [12] STEPHAN J, STEGLE O, BEYER A. A random forest approach to capture genetic effects in the presence of population structure[J]. Nature Communications, 2015(6):7432. [13] DAS K, LI J, WANG Z, et al. A dynamic model for genome-wide association studies[J]. Human Genetics, 2011, 129(6):629-639. [14] HAYES B J, PRYCE J, CHAMBERLAIN A J, et al. Genetic architecture of complex traits and accuracy of genomic prediction: Coat colour, milk-fat percentage, and type in holstein cattle as contrasting model traits[J]. Plos Genetics, 2010,6(9):e1001139. [15] HUANG X, HAN B. Natural variations and genome-wide association studies in crop plants[J]. Annual Review of Plant Biology, 2014, 65:531-551. [16] 段忠取,朱军. 全基因组关联分析研究进展[J]. 浙江大学学报(农业与生命科学版), 2015, 41(4):385-393. DUAN Z Q, ZHU J. Reacher progress of genome-wide association study[J]. Journal of Zhejiang University(Agricultural and Life Sciences Edition), 2015, 41(4):385-393. [17] MILES B, WAYNE M. Quantitative trait locus(QTL)analysis[R]. Nature Education, 2008. [18] MACKAY T F. Epistasis and quantitative traits: Using model organisms to study gene-gene interactions[J]. Nature Reviews Genetics, 2014, 15(1):22-33. [19] ZHAO K, TUNG C W, EIZENGA G C, et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa[J]. Nature Communications, 2011,467(2):467. [20] FROVA C, KRAJEWSKI P, FONZO N D, et al. Genetic analysis of drought tolerance in maize by molecular markers I. Yield components[J]. Theoretical and Applied Genetics, 1999, 99(1):280-288. [21] 王玉. 利用复合性状开展qtl作图的有效性研究[D]. 沈阳:沈阳农业大学, 2010. WANG Y. On the use of mathematically-derived composite traits and their efficiency in quantitive trait locus mapping[D]: Shenyang: Shenyang Agricalture University, 2010. [22] 李斌,陈听宽,崔凝. SIMPLEX算法与其他算法收敛特性的比较[J]. 华北电力大学学报(自然科学版), 2004, 31(3):51-55. LI B, CHEN T K, CUI N.Convergence characteristics of SIMPLEX comparing with other SIMPLEX algorithms[J]. Journal of North China Electric Power University(Natural Science Edition), 2004, 31(3):51-55. [23] 刘光辉,尹红婷. BFGS算法的全局收敛性分析[J]. 曲阜师范大学学报(自然科学版), 1994(1):1-8. LIU G H, YIN H T. Analysis on thglobal convergence of BFGS algorithm[J]. Journal of Qufu Normal University(Natural Sciences Edition), 1994(1):1-8. [24] XU M, JIANG L, ZHU S, et al. A computational framework for mapping the timing of vegetative phase change[J]. New Phytologist, 2016, 211(2):750-760. [25] LIU R. Light-harvesting chlorophyll a/b-binding proteins, positively involved in abscisic acid signalling, require a transcription repressor, WRKY40, to balance their function[J]. Journal of Experimental Botany, 2013, 64(18):2274-2275. [26] KEITH B, DONG X N, AUSUBEL F M, et al. Differential induction of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase genes in Arabidopsis thaliana by wounding and pathogenic attack[J]. Proceedings of the National Academy of Sciences, 1991, 88(19):8821-8825. [27] VOSS I, GOSS T, MUROZUKA E, et al. FdC1, a novel ferredoxin protein capable of alternative electron partitioning, increases in conditions of acceptor limitation at photosystem I[J]. Journal of Biological Chemistry, 2010, 286(1):50-59. [28] VOLL L M, JAMAI A, RENNÉ P, et al. The photorespiratory Arabidopsis shm1 mutant is deficient in SHM1[J]. Plant Physiology, 2006, 140(1):59-66. [29] REN G, AN K, YANG L, et al. Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis[J]. Plant Physiology, 2007, 144(3):1429-1441. [30] HARTUNG F, SUER S, KNOLL A, et al. Topoisomerase 3α and RMI1 suppress somatic crossovers and are essential for resolution of meiotic recombination intermediates in, Arabidopsis thaliana[J]. Plos Genetics, 2008, 4(12):e1000285. [31] MOEDER W, DEL P O, NAVARRE D A, et al. Aconitase plays a role in regulating resistance to oxidative stress and cell death in Arabidopsis and Nicotiana benthamiana[J]. Plant Molecular Biology, 2007, 63(2):273-287. [32] KIRIK A, EHRHARDT D W, KIRIK V. TONNEAU2/FASS regulates the geometry of microtubule nucleation and cortical array organization in interphase Arabidopsis cells[J]. Plant Cell, 2012, 24(3):1158-1170. [33] WANG W, WANG L, CHEN C, et al. Arabidopsis CSLD1 and CSLD4 are required for cellulose deposition and normal growth of pollen tubes[J]. Journal of Experimental Botany, 2011, 62(14):51-61. [34] HOBBIE L J. Auxin and cell polarity: the emergence of AXR4[J]. Trends in Plant Science, 2006(11):517-518. [35] 邬荣领, 林敏, 赵伟,等. 动态复杂性状遗传结构研究的统计模型[J]. 南京林业大学学报(自然科学版),2006,30(3):1-12. DOI:10.3969/j.issn.1000-2006.2006.03.001. WU R L, LIN M, ZHAO W, et al. Statistical models for studying the genetic architecture of dynamic complex traits[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2006, 30(3):1-12. [36] BUCKLER E S, HOLLAND J B, BRADBURY P J, et al. The genetic architecture of maize flowering time[J]. Science, 2009, 325(5941):714-718. [37] 单保山. 遗传力的概念及其发展 Ⅰ.关于传统遗传力的几个问题[J]. 河北农业大学学报,1988,11(1):39-44. SHAN B S. The concept of heritability and its development Ⅰ. Some views on heritability[J]. Journal of Agricultural University of Hebei, 1988, 11(1):39-44. [38] 侯志强,吴启富. 抽样调查样本量的确定[J]. 全国商情:经济理论研究, 2007(3):108-109. HOU Z Q, WU Q F. Determination of sample size in sampling survey[J]. China Business: Economic Theory Research, 2007(3):108-109. [39] 胡文明. 作物复杂性状QTL定位相关的几个问题的探讨[D]. 扬州:扬州大学,2014. HU W M. Discussion of several issues related to QTL[D]. Yangzhou: Yangzhou University, 2014. [40] POETHIG R S. Heterochronic mutations affecting shoot development in maize[J]. Genetics,1988, 119(4):959-973. [41] RJE W, POTTS B M, REID J B. Genetic control of reproductive and vegetative phase change in the Eucalyptus risdonii-E. tenuiramis complex[J]. Australian Journal of Botany, 1998(46):45-63. [42] HUDSON C J, FREEMAN J S, JONES R C, et al. Genetic control of heterochrony in Eucalyptus globulus[J]. G3-Genes Genomes Genetics, 2014, 4(7):359-363. [43] POETHIG R S. Phase change and the regulation of developmental timing in plants[J]. Science, 2003, 301(5631):334-336. [44] ROUGVIE A E. Intrinsic and extrinsic regulators of developmental timing: from miRNAs to nutritional cues[J]. Development, 2005, 132(17):3787-3798. [45] BÄURLE I, DEAN C. The timing of developmental transitions in plants[J]. Cell, 2006, 125(4):655-664. [46] HUIJSER P, SCHMID M. The control of developmental phase transitions in plants[J]. Development, 2011, 138(19):4117-4129. |
[1] | 马坛, 田野, 王书军, 李文昊, 段启英, 张庆源. 不同性别南方型黑杨无性系叶片对土壤短期间歇性干旱的生理响应[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 172-180. |
[2] | 王改萍, 章雷, 曹福亮, 丁延朋, 赵群, 赵慧琴, 王峥. 红蓝光质对银杏苗木生长生理特性及黄酮积累的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 105-112. |
[3] | 宋子琪, 卞国良, 林峰, 胡凤荣, 尚旭岚. 流式细胞仪鉴定青钱柳倍性方法的建立及其应用[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 61-68. |
[4] | 孙旭高, 陶家璐, 谢微, 石洁, 张宝津, 邓小梅. 米老排优树组培技术体系优化研究[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 69-78. |
[5] | 顾宸瑞, 袁启航, 姜静, 穆怀志, 刘桂丰. 基于转录组测序的关联分析定位裂叶桦叶形调控基因[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 39-46. |
[6] | 杨蕴力, 曹俐, 王阳, 顾宸瑞, 陈坤, 刘桂丰. BpGLK1基因干扰表达对裂叶桦叶色及生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 18-28. |
[7] | 王伟, 邱志楠, 李爽, 白向东, 刘桂丰, 姜静. CRISPR/Cas9核糖核蛋白介导的无T-DNA插入的白桦BpGLK1精准突变[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 11-17. |
[8] | 国颖, 杨港归, 吴雨涵, 何杰, 何玉洁, 廖浩然, 薛良交. DNA甲基化调控植物组织培养过程的分子机制研究进展[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 1-8. |
[9] | 陈俊娜, 王晓宇, 陈晨, 彭辉武, 陈娟, 黄卫和, 喻方圆. BR对东京野茉莉种子中脂肪酸合成相关酶活性及油脂积累的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 35-41. |
[10] | 宫楠, 祖鑫, 解志军, 朱长红, 李淑娴. 紫荆种子吸胀和层积过程中不同相态水分变化的核磁共振检测[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 42-50. |
[11] | 王章荣, 季孔庶, 徐立安, 邹秉章, 林能庆, 林景泉. 马尾松实生种子园营建技术、现实增益及多世代低成本经营新模式探讨[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 9-16. |
[12] | 欧阳, 欧阳芳群, 孙猛, 王超, 王军辉, 安三平, 王丽芳, 许娜, 王猛. 欧洲云杉无性系幼龄生长节律、年度和密度互作效应及选择策略[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 95-104. |
[13] | 罗芊芊, 李峰卿, 肖德卿, 邓章文, 王建华, 周志春. 两个南方红豆杉天然居群的交配系统分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 80-86. |
[14] | 郭伟, 韩秀, 张利, 王迎, 杜辉, 燕语, 孙忠奎, 张林, 李国华, 罗磊. 青檀扦插苗对不同氮素水平的形态、光合生理响应和转录组分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 87-96. |
[15] | 刘蓉, 吴德军, 王因花, 任飞, 李丽, 燕丽萍, 周晓锋. 白蜡花粉最佳离体萌发培养基筛选[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 70-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||