南京林业大学学报(自然科学版) ›› 2017, Vol. 41 ›› Issue (06): 169-176.doi: 10.3969/j.issn.1000-2006.201703031
陈佩珍,吴晓刚,韦 蔷,武 星,季孔庶
出版日期:
2017-12-18
发布日期:
2017-12-18
基金资助:
CHEN Peizhen, WU Xiaogang, WEI Qiang, WU Xing, JI Kongshu
Online:
2017-12-18
Published:
2017-12-18
摘要: 植物木质素是影响纸浆材品质的关键因素,而松科植物作为重要的纸浆材,对其木质素合成相关调控基因进行系统了解,可为完善木质素生物合成模型提供一定的理论依据。笔者通过对国内外已有研究进行分析,总结植物木质素结构、木质素合成途径、木质素合成相关酶基因及松科植物木质素合成基因的研究进展。归纳出松科植物火炬松(Pinus taeda)、马尾松(P. massoniana)、辐射松(P. radiata)、挪威云杉(Picea abie)等木质素合成酶基因研究主要集中在苯丙氨酸解氨酶(phenylalanineammonialyase,PAL)、4-香豆酸辅酶A连接酶(4-coumarate CoA ligase, 4CL)、肉桂酸4-羟化酶(cinnamic 4-hydroxygenase, C4H)、香豆酸3-羟化酶(Coumarate 3-hydroxylase, C3H)、咖啡酰辅酶A-O-甲基转移酶(caffeoyl coenzyme A-O-methyltransferase, CCoAOMT)、肉桂酰基辅酶A还原酶(Cinnamoyl CoA reductase, CCR)和肉桂醇脱氢酶(Cinnamyl alcohol dehydrogenase, CAD)等一些常见基因上,其他莽草酸羟基肉桂酰转移酶(shikimate hydroxycinnamoyl transferase, HCT)、阿魏酸5-羟化酶(ferulo 5-hydroxylase, F5H)、O-甲基转移酶(O-methyltransferase, OMT)及咖啡酸-O-甲基转移酶(caffeic acid O-methyltransferase, COMT)等基因研究较欠缺,此外,还有部分基因未涉及。木质素合成是研究松科植物纸浆材的重要切入点,对现有松科植物木质素合成过程中存在问题进行精确的估计,对进一步深入研究松科植物木质素合成机制和优质纸浆材选育具有重要意义。
中图分类号:
陈佩珍,吴晓刚,韦蔷,等. 松科植物木质素合成相关基因研究进展[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 169-176.
CHEN Peizhen, WU Xiaogang, WEI Qiang, WU Xing, JI Kongshu. Research progress of lignin synthesis gene in Pinaceae[J].Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(06): 169-176.DOI: 10.3969/j.issn.1000-2006.201703031.
[1] BOUDET A M, LAPIERRE C, GRIMA-PETTENATI J. Biochemistry and molecular biology of lignification[J]. The News Phytologist, 1995,129(2):203-236. DOI: 10.1111/j.1469-8137.1995.tb04292.x.
[2] DAVIN L B, LEWIS N G. Phenylpropanoid metabolism: biosynthesis of monolignols, lignans, neolignans, lignins and suberins[J]. Rec Adv Phytochem, 1992,26:325-375. DOI: 10.1007/978-1-4615-3430-3_11. [3] HAHLBROCK K, SCHEEL D. Physiology and molecular biology of phenylpropanoid metabolism[J]. Annual Review of Plant Biology, 1989,40:347-369. DOI: 10.1146/annurev.pp.40.060189.002023. [4] DIXON R A. Natural products and plant disease resistance[J]. Nature, 2001, 411: 843-847. DOI: 10.1038/35081178. [5] BAURHOO B, RUIZ-FERIA C A, ZHAO X. Purified lignin: nutritional and health impacts on farm animals: a review[J]. Animal Feed Science and Technology, 2008, 144(3-4): 175-184. DOI: 10.1016/j.anifeedsci.2007.10.016. [6] BHUIYAN N H, SELVARAJ G, WEI Y, et al. Role of lignification in plant defense[J]. Plant Signaling & Behavior, 2009,4:158-159. DOI: 10.4161/psb.4.2.7688. [7] LEWIS N G, DAVIN L B. Evolution of lignan and neolignan biochemical pathways[J]. ACS Symposium Series, 1994,562:202-246. DOI: 10.1021/bk-1994-0562.ch010. [8] 魏建华, 宋艳茹. 木质素生物合成途径及调控的研究进展[J]. 植物学报, 2001,43(8):771-779. WEI J H, SUN Y R. Recent advances in study of lignin biosynthesis and manipulation[J]. Journal of Integrative Plant Biology, 2001, 43(8)771-779. [9] ONYSKO K A. Biological bleaching of chemical pulps: a review[J]. Biotechnology Advances,1993,11(2):179-198. DOI: 10.1016/0734-9750(93)90040-T. [10] BOERJAN W, RALPH J, BAUCHER M. Lignin biosynthesis[J]. Annual Review of Plant Biology, 2003, 54:519-546. DOI: 10.1146/annurev.arplant.54.031902.134938. [11] BOUDET A M, KAJITA S, GRIMA-PETTENATI J, et al. Lignins and lignocellulosics: a better control of synthesis for new and improved uses[J]. Trends in Plant Science,2003,8(12):576-581. DOI: 10.1016/j.tplants.2003.10.001. [12] WENG J K, CHAPPLE C T. The origin and evolution of lignin biosynthesis[J]. New Phytologist, 2010,187(2): 273-285. DOI: 10.1111/j.1469-8137.2010.03327.x. [13] PLOMION C, LEPROVOST G, STOKES A. Wood formation in trees[J]. Plant Physiology, 2001,127:1513-1523. DOI: 10.1104/pp.010816. [14] HATAKEYAMA H, MATSUMURA H, HATAKEYAMA T. Glass transition and thermal degradation of rigid polyurethane foams derived from castor oil-molasses polyols[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111(2):1545-1552. DOI: 10.1007/s10973-012-2501-5. [15] HOLLADAY J E, BOZELL J J, WHITE J F, et al. Top value added candidates from biomass, volume II: results of screening for potential candidates from biorefinery lignin[J]. Biomass Fuels, 2007,(2):263-275. DOI: 10.2172/921839. [16] CHEN Y R, SARKANEN S. X-Ray powder diffraction analyses of kraft lignin-based thermoplastic polymer blends[M]. Oxford, UK: Blackwell Publishing Ltd, 2009:301-315. [17] SCHORR D, DIOUF PN, STEVANOVIC T. Evaluation of industrial lignins for biocomposites production[J]. Industrial Crops and Products, 2014,52(1):65-73. DOI: 10.1016/j.indcrop.2013.10.014. [18] LAPIERRE C, POLLET B, PETIT-CORIL M, et al. Structural alteration of lignin in transgenic poplars with depressed cinnamoyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an oppsite impact on the efficiency of industrial kraft pulping[J]. Plant Physiology, 1999,119:153-164. DOI:10.1104/pp.119.1.153. [19] BUGOS R C, CHIANG V L C, CAMPBELL W H. cDNA clonging, sequence analysis and seasonal expression of lignin-bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase of aspen[J]. Plant Molecular Biology, 1991,17(6):1203-1215. DOI: 10.1007/BF00028736. [20] DOORSSELAERE J V, BAUCHER M, CHOGNOT E, et al. A novel lignin in poplar trees with a reduced caffeic acid/5-hydroxyferulicacid O-methyltransferase activity[J]. Plant Journal, 1995,8(6):855-864. DOI: 10.1046/j.1365-313X.1995.8060855.x. [21] HUMPHREYS J M, CHAPPLE C. Rewriting the lignin roadmap[J]. Current Opinion in Plant Biology, 2002,5(3):224-229. DOI: 10.1016/S1369-5266(02)00257-1. [22] RASTOGI S, DWIVEDI U N. Manipulation of lignin in plants with special reference to O-methyltransferase[J]. Plant Science. 2008,174(3):264-277. DOI: 10.1016/j.plantsci.2007.11.014. [23] GRIMA-PETTENATI J, GOFFNER D. Lignin genetic engineering revisited[J]. Plant Science, 1999,145:51-65. DOI:10.1016/S0168-9452(99)00051-5. [24] RALPH J, LUNDQUIST K, BRUNOW G, et al. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids[J]. Phytochemistry Reviews, 2004,3(1):29-60. DOI: 10.1023/B:PHYT.0000047809.65444.a4. [25] VANHOLME R, RALPH J, AKIYAMA T, et al. Engineering traditional monolignols out of lignin by concomitant up-regulation of F5H1 and down-regulation of COMT in Arabidopsis[J]. Plant Journal for Cell & Molecular Biology,2010,64:885-897. DOI: 10.1111/j.1365-313X.2010.04353.x. [26] VANHOLME R, CESARINO I, RATAJ K, et al. Caffeoyl shikimate esterase(CSE)is an enzyme in the lignin biosynthetic pathway in Arabidopsis[J]. Science, 2013,341(6150):1103-1106. DOI: 10.1126/science.1241602. [27] VARGAS L, CESARINO I, VANHOLME R, et al. Improving total saccharification yield of Arabidopsis plants by vesselspecific complementation of caffeoyl shikimate esterase(cse)mutants[J]. Biotechnology for Biofuels, 2016,9:139-155. DOI: 10.1186/s13068-016-0551-9. [28] DIXON R A, PAIVA N L. Stress-induced phenylpropanoid metabolism[J]. The Plant Cell,1995,7:1085-1097. DOI: 10.1105/tpc.7.7.1085. [29] RALPH J, MACKAY J J, HATFIELD R D, et al. Abnormal lignin in a loblolly pine mutant[J]. Science, 1997,227(5325):235-239. DOI: 10.1126/science.277.5323.235. [30] MACKAY J J, OMALLEY D M, PRESNELL T, et al. Inheritance, gene expression and lignin characterization in a mutant pine deficient in cinnamoyl alcohol dehydrogenase[J]. Proc Natl Acad Sci USA, 1997, 94(15): 8255-8260. [31] ARISTIDOU A, PENTTILA M. Metabolic engineering applications to renewable resource utilization[J]. Current Opinion in Biotechnology, 2000,11(2):187-198. DOI: 10.1016/S0958-1669(00)00085-9. [32] CHRISTENSEN J H, BAUCHER M, CONNELL A O, et al. Control of lignin biosynthesis[J]. Forestry Sciences, 2000,64:227-267. DOI: 10.1007/978-94-017-2311-4_9. [33] VOO K S, WHETTEN R W, MLLEY D M, et al. 4-Coumarate: coenzyme a ligase from loblolly pine xylem isolation, characterization, and complementary DNA cloning[J]. Plant Physiol, 1995, 108(1):85-97. [34] ZHANG X H, CHIANG V L. Molecular cloning of 4-coumarate: coenzyme a ligase in loblolly pine and the roles of this enzyme in the biosynthesis of lignin in compression wood[J]. Plant Physiol, 1997,113(1):65-74. DOI: 10.1104/pp.113.1.65. [35] LI L, OSAKABE Y, JOSHI C P, et al. Secondary xylem-specific expression of caffeoyl-coenzyme A 3-O-methyltransferase plays an important role in the methylation pathway associated with lignin biosynthetic in Loblloly pine[J]. Plant Mol Biol, 1999,40(4):555-565. DOI: 10.1023/A:1006244325250. [36] LI L, POPKO J L, ZHANG X H, et al. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine[J]. Proc Natl Acad Sci USA, 1997,94(10):5461-5466. [37] ANTEROLA A M, JEON J H, DAVIN L B, et al. Transcriptional control of monolignol biosynthesis in Pinus taeda: factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism[J].The Journal of Biological Chemistry,2002,277(21):18272-18280. DOI: 10.1074/jbc.M112051200. [38] 陈碧华. 马尾松肉桂酰辅酶A还原酶基因(CCR)克隆与分析[J]. 林业科技, 2009,45(12):46-53. CHEN B H. Cloning and sequence analysis of cinnamoyl-CoA reductase gene(CCR)of Pinus massoniana[J]. Forestry Science and Technology, 2009,45(12):46-53. [39] 曹福祥, 王猛, 龙绛雪. 马尾松苯丙氨酸解氨酶基因cDNA全长克隆与序列分析[J]. 湖南师范大学自然科学学报, 2010,33(01):91-95. CAO F X, WANG M, LONG J X. Cloning and sequence analys of full-Length cDNA of phenylalanine ammonia-lyase of Pinus massoniana[J]. Journal of Natural Science of Hunan Normal University, 2010,33(1):91-95. [40] VAN H H, VAN G H, VAN T N, et al. Identification and functional analysis of the Pm4CL1 gene in transgenic tobacco plant as the basis for regulating lignin biosynthesis in forest trees[J]. Molecular Breeding, 2012,29(1):173-180. DOI: 10.1007/s11032-010-9535-9. [41] 韩欣. 马尾松木质素合成途径中4CL基因克隆及RNA干扰载体构建研究[D]. 长沙:中南科技林业大学, 2012. HAN X. Gene cloning of Pinus massoniana 4CL and construction of its RNAi expression vector[D]. Changsha: Central South University of Science and Technology,2012. [42] 张逢凯. 马尾松CAD和CCoAOMT基因的克隆与表达分析[D]. 南京: 南京林业大学, 2014. ZHANG F K. Cloning and analyzing of CAD and CCoAOMT genes from Pinus massoniana [D]. Nanjing: Nanjing Forestry University,2014. [43] MOYLE R, MOODY J, PHILLIPS L. Isolation and characterization of a Pinus radiata lignin biosynthesis-related O-methyltransferase promoter[J]. Plant Cell Reports, 2002,20(11):1052-1060. DOI: 10.1007/s00299-002-0457-9. [44] MÖLLER R, KOCH G, NANAYAKKARA B, et al. Lignification in cell cultures of Pinus radiata: activities of enzymes and lignin topochemistry[J]. Tree Physiology, 2006,26(2):201-210. DOI: 10.1093/treephys/26.2.201. [45] WAGNER A, RALGH J, AKIYAMA T, et al. Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase in Pinus radiata [J]. Proc Natl Acad Sci USA,2007,104(28):11856-11861. DOI: 10.1073/pnas.0701428104. [46] ARMIN W, LIOYD D, HOON K, et al. Suppression of 4-Coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata[J]. Plant Physiology, 2009,149(1):370-383. DOI: 10.1104/pp.108.125765. [47] WAGNER A, TOBIMATSU Y, PHILLIPS L, et al. CCoAOMT suppression modifies lignin composition in Pinus radiata[J]. Plant Journal for cell & molecular biology, 2011,67(1):119-129. DOI: 10.1111/j.1365-313X.2011.04580.x. [48] WANGHER A, TOBIMATSU Y, GOEMINNE G, et al. Suppression of CCR impacts metabolite profile and cell wall composition in Pinus radiata tracheary elements[J]. Plant Mol Biol, 2013,81(1/2):105-117. DOI: 10.1007/s11103-012-9985-z. [49] MESSNER B, BOLL M. Elicitor-mediated induction of enzymes of lignin biosynthesis and formation of lignin-like material in a cell suspension culture of spruce(Picea abies)[J]. Plant Cell Tissue & Organ Culture, 1993,34:261-269. DOI: 10.1007/BF00029715. [50] WADENBÄCK J, ARNOLD S V, WALTER M H, et al. Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase(CCR)[J]. Transgenic Research,2008,17(3):379-392. DOI: 10.1007/s11248-007-9113-z. [51] CRAVEN-BARTLE VENBARTLE B, PASCUAL M B, CANOVAS F M, et al. A Myb transcription factor regulates genes of the phenylalanine pathway in maritime pine[J].The Plant Journal, 2013,74(5):755-766. DOI: 10.1111/tpj.12158. [52] 乔明星, 林晓飞, 张文波. 兴安落叶松咖啡酸-O-甲基转移酶基因的克隆及特性分析[J]. 分子植物育种, 2016,14(7):1684-1690. DOI:10.13271/j.mpb.014.001684. QIAO M X, LIN X F, ZHANG W B. Isolation and characterization of caffeic acid O methyltran-sferase gene from Larix gmelinii[J]. Molecular Plant Breeding, 2016,14(7):1684-1690. DOI:10.13271/j.mpb.014.001684. |
[1] | 马坛, 田野, 王书军, 李文昊, 段启英, 张庆源. 不同性别南方型黑杨无性系叶片对土壤短期间歇性干旱的生理响应[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 172-180. |
[2] | 王改萍, 章雷, 曹福亮, 丁延朋, 赵群, 赵慧琴, 王峥. 红蓝光质对银杏苗木生长生理特性及黄酮积累的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 105-112. |
[3] | 宋子琪, 卞国良, 林峰, 胡凤荣, 尚旭岚. 流式细胞仪鉴定青钱柳倍性方法的建立及其应用[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 61-68. |
[4] | 孙旭高, 陶家璐, 谢微, 石洁, 张宝津, 邓小梅. 米老排优树组培技术体系优化研究[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 69-78. |
[5] | 顾宸瑞, 袁启航, 姜静, 穆怀志, 刘桂丰. 基于转录组测序的关联分析定位裂叶桦叶形调控基因[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 39-46. |
[6] | 杨蕴力, 曹俐, 王阳, 顾宸瑞, 陈坤, 刘桂丰. BpGLK1基因干扰表达对裂叶桦叶色及生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 18-28. |
[7] | 王伟, 邱志楠, 李爽, 白向东, 刘桂丰, 姜静. CRISPR/Cas9核糖核蛋白介导的无T-DNA插入的白桦BpGLK1精准突变[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 11-17. |
[8] | 国颖, 杨港归, 吴雨涵, 何杰, 何玉洁, 廖浩然, 薛良交. DNA甲基化调控植物组织培养过程的分子机制研究进展[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 1-8. |
[9] | 陈俊娜, 王晓宇, 陈晨, 彭辉武, 陈娟, 黄卫和, 喻方圆. BR对东京野茉莉种子中脂肪酸合成相关酶活性及油脂积累的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 35-41. |
[10] | 宫楠, 祖鑫, 解志军, 朱长红, 李淑娴. 紫荆种子吸胀和层积过程中不同相态水分变化的核磁共振检测[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 42-50. |
[11] | 王章荣, 季孔庶, 徐立安, 邹秉章, 林能庆, 林景泉. 马尾松实生种子园营建技术、现实增益及多世代低成本经营新模式探讨[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 9-16. |
[12] | 欧阳, 欧阳芳群, 孙猛, 王超, 王军辉, 安三平, 王丽芳, 许娜, 王猛. 欧洲云杉无性系幼龄生长节律、年度和密度互作效应及选择策略[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 95-104. |
[13] | 罗芊芊, 李峰卿, 肖德卿, 邓章文, 王建华, 周志春. 两个南方红豆杉天然居群的交配系统分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 80-86. |
[14] | 郭伟, 韩秀, 张利, 王迎, 杜辉, 燕语, 孙忠奎, 张林, 李国华, 罗磊. 青檀扦插苗对不同氮素水平的形态、光合生理响应和转录组分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 87-96. |
[15] | 刘蓉, 吴德军, 王因花, 任飞, 李丽, 燕丽萍, 周晓锋. 白蜡花粉最佳离体萌发培养基筛选[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 70-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||