[1] 方炎明. 中国鹅掌楸的地理分布与空间格局[J]. 南京林业大学学报, 1994, 18(2): 13-18. DOI:10.3969/j.jssn.1000-2006.1994.02.003. FANG Y M. Geographical distribution and spatial pattern of Liriodendron chinese(Hemsl.)Sarg[J]. Journal of Nanjing Forestry University, 1994, 18(2): 13-18. [2] 季孔庶, 王章荣. 鹅掌楸属植物研究进展及其繁育策略[J]. 世界林业研究, 2001, 14(1): 8-14. DOI:10.13348/j.cnki.sjlyyj.2001.01.002. JI K S, WANG Z R. Current advances on Liriodendron and their breeding strategies[J]. World Forestry Research, 2001, 14(1): 8-14. [3] 王章荣. 鹅掌楸属树种杂交育种与利用[M]. 北京:中国林业出版社,2016. WANG Z R. Utilization and species hybridization in Liriodendron[M]. Beijing: China Forestry Publishing House, 2016. [4] 李周岐,王章荣. 鹅掌楸属种间杂交可配性与杂种优势的早期表现[J].南京林业大学学报(自然科学版),2001,25(2):34-38. DOI:10.3969/j.jssn.1000-2006.2001.02.009. LI Z Q, WANG Z R. Cross ability and heterosis for seed-traits in Liriodendron[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2001,25(2):34-38. [5] 叶金山,王章荣.杂种马褂木杂种优势的遗传分析[J].林业科学,2002,38(4):67-71. DOI:10.11707/j.1001-7488.20020411. YE J S, WANG Z R. Genetic analysis of heterosis for hybrid tulip tree[J]. Scientia Silvae Sinicae, 2002,38(4):67-71. [6] 王晓阳,李火根.鹅掌楸苗期生长杂种优势的SSR分析[J].林业科学,2011,47(4):57-62. WANG X Y, LI H G. Possible mechanism analysis for heterosis of hybrid Liriodendron based on seedling growth and SSR markers[J]. Scientia Silvae Sinicae, 2011,47(4):57-62. [7] 陈金慧,施季森,诸葛强,等. 杂交鹅掌楸体细胞胚胎发生研究[J]. 林业科学,2003,39(4): 49-53. DOI:10.11707/j.1001-7488.2003408. CHEN J H, SHI, J S, ZHUGE Q, et al. Studies on the somatic embryogenesis of Liriodendron hybrids(L. chinese×L. tulipifera)[J]. Scientia Silvae Sinicae, 2003,39(4): 49-53. [8] 陈金慧,张艳娟,李婷婷,等. 杂交鹅掌楸体胚发生过程的起源及发育过程[J]. 南京林业大学学报(自然科学版),2012,36(1):16-20. DOI:10.3969/j.jssn.1000-2006.2012.01.004. CHEN J H, ZHANG Y J, LI T T, et al. Study on origin and development of somatic embryos of Liriodendron hybrids[J].Journal of Nanjing Forestry University(Natural Sciences Edition), 2012, 36(1): 16-20. [9] 成铁龙,孟岩,陈金慧,等. 茉莉酸甲酯对杂交鹅掌楸体胚发育的影响[J]. 南京林业大学学报(自然科学版),2017,41(6):41-46. DOI:10.3969/j.issn.1000-2006.201709011. CHENG T L, MENG Y, CHEN J H, et al. Effects of methyl jasmonic acid on somatic embryogenesis of Liriodendron hybrid[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2017,41(6):41-46. [10] 鲁路,陆叶,盛宇,等.不同活性炭对杂交鹅掌楸体胚发生的影响[J].南京林业大学学报(自然科学版),2016,40(2):59-64. DOI:10.3969/j.issn.1000-2006.2016.02.010. LU L, LU Y, SHENG Y, et al. Effects of different activated carbon on somatic embryogenesis of Liriodendron hybrids[J].Journal of Nanjing Forestry University(Natural Sciences Edition), 2016, 40(2):59-64. [11] 李周岐,王章荣.杂种马褂木无性系随机扩增多态DNA指纹图谱的构建[J].东北林业大学学报,2001,29(4):5-8. DOI:10.13759/j.cnki.dlxb.2001.04.002. LI Z Q, WANG Z R. RAPD fingerprints of interspecific hybrid clones in Liriodendron[J]. Journal of Northeast Forestry University, 2001,29(4):5-8. [12] 施季森,童春发.林木遗传图谱构建和QTL定位统计分析[M].北京:科学出版社,2006. SHI J S, TONG C F. Establishment of tree genetic map and statistical analysis of QTL location[M]. Beijing: Science Press, 2006. [12] LANDER E S. The new genomics: global views of biology[J]. Science, 1996, 274(5287):536-539. DOI: 10.1126/science.274.5287.536. [14] 李小白, 崔海瑞, 张明龙. EST分子标记开发及在比较基因组学中的应用[J]. 生物多样性, 2006, 14(6): 541-547. DOI: 10.3321/j.issn:1005-0094.2006.06.010. LI X B, CUI H R, ZHANG M L. Molecular markers derived from EST: their development and applications in comparative genomics[J]. Biodiversity Science, 2006, 14(6): 541-547. [15] 贺道华,邢宏宜,赵俊兴,等. 多倍体植物中单核苷酸多态性(SNPs)的开发[J]. 浙江大学学报(农业与生命科学版), 2011, 37(5): 485-492. DOI: 10.3785/j.issn.1008-9209.2011.05.003. HE D H, XING H Y, ZHAO J X, et al. Single nucleotide polymorphism(SNP)discovery in polyploid plants[J]. Journal of Zhejiang University(Agriculture & Life Sciences), 2011, 37(5): 485-492. [16] 唐立群, 肖层林, 王伟平. SNP分子标记的研究及其应用进展[J]. 中国农学通报, 2012, 28(12): 154-158. DOI: 10.3969/j.issn.1000-6850.2012.12.028. TANG L Q, XIAO C L, WANG W P. Research and application progress of SNP markers[J]. Chinese Agricultural Science Bulletin, 2012, 28(12): 154-158. [17] 王振玉, 李威, 周晓箭, 等. 棉花单核苷酸多态性标记研究进展[J]. 棉花学报, 2016, 28(4):399-406. DOI: 10.11963/issn.1002-7807.201604012. WANG Z Y, LI W, ZHOU X J, et al. Review of single nucleotide polymorphism markers in cotton[J]. Cotton Science, 2016, 28(4):399-406. [18] 王洋坤, 胡艳, 张天真. RAD-seq技术在基因组研究中的现状及展望[J]. 遗传, 2014, 36(1):41-49. DOI: 10.3724/SP.J.1005.2014.0050. WANG Y K, HU Y, ZHANG T Z. Current status and perspective of RAD-seq in genomic research[J]. Hereditas, 2014, 36(1):41-49. [19] MILLER M R, DUNHAM J P, AMORES A, et al. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA(RAD)markers[J]. Genome Research, 2007, 17(2): 240-248. DOI: 10.1101/gr.5681207. [20] BARCHI L, LANTERI S, PORTIS E, et al. Identification of SNP and SSR markers in eggplant using RAD tag sequencing[J]. BMC Geno-mics, 2011, 12(1): 304. DOI: 10.1186/1471-2164-12-304. [21] PFENDER W F, SAHA M C, JOHNSON E A, et al. Mapping with RAD(restriction-site associated DNA)markers to rapidly identify QTL for stem rust resistance in Lolium perenne[J]. Theoretical and Applied Genetics, 2011, 122(8): 1467-1480. DOI: 10.1007/s00122-011-1546-3. [22] CHUTIMANITSAKUN Y, NIPPER R W, CUESTA-MARCOS A, et al. Construction and application for QTL analysis of a restriction site associated DNA(RAD)linkage map in barley[J]. BMC Genomics, 2011, 12(1): 4. DOI: 10.1186/1471-2164-12-4. [23] WANG N, FANG L, XIN H, et al. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing[J]. BMC Plant Biology, 2012, 12(1): 148. DOI: 10.1186/1471-2229-12-148. [24] WANG Y K, NING Z Y, HU Y, et al. Molecular mapping of restriction-site associated DNA markers in allotetraploid upland cotton[J]. PloS One, 2015, 10(4): e0124781. DOI:10.1371/journal.pone.0124781. [25] DAVEY J W, BLAXTER M L. RADSeq: next-generation population genetics[J]. Briefings in Functional Genomics, 2010, 9(5-6):416-423. DOI: 10.1093/bfgp/elr007. [26] 李文轲, 李丰余, 张思瑶, 等. 基因组二代测序数据的自动化分析流程[J]. 遗传, 2014, 36(6): 618-624. DOI: 10.3724/SP.J.1005.2014.0618. LI W K, LI F Y, ZHANG S Y, et al. Automatic analysis pipeline of next-generation sequencing data[J]. Hereditas, 2014, 36(6): 618-624. [27] 王晓丽, 马祥庆. 遗传标记技术及其在林木遗传育种中的应用研究[J]. 世界林业研究, 2005, 18(5):37-41. DOI: 10.3969/j.issn.1001-4241.2005.05.008. WANG X L, MA X Q. Advances in genetic markers and its application in forest tree breeding[J]. World Forestry Research, 2005, 18(5):37-41. [28] 罗光佐, 施季森. 利用RAPD标记分析北美鹅掌楸与鹅掌楸种间遗传多样性[J]. 植物资源与环境学报, 2000, 9(2):9-13. DOI: 10.3969/j.issn.1674-7895.2000.02.003. LUO G Z, SHI J S. Comparison of genetic diversity between Liriodendron tulipifera Linn. and Liriodendron chinense(Hemsl.)Sarg. by means of RAPD markers[J]. Journal of Plant Resources and Environment, 2000, 9(2):9-13. [29] 骆鹏,曹玉婷,莫家兴,等.柳杉无性系指纹图谱的构建及遗传多样性分析[J].南京林业大学学报(自然科学版),2017,41(4):191-196.DOI: 10.3969/j.issn.1000-2006.201611006. LUO P, CAO Y T, MO J X, et al. Analysis of genetic diversity and construction of DNA fingerprinting of clones in Cryptomeria fortune[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2017,41(4):191-196. [30] BARCHI L, LANTERI S, PORTIS E, et al. A RAD tag derived marker based eggplant linkage map and the location of QTLs determining anthocyanin pigmentation[J]. PLoS One, 2012, 7(8): e43740. DOI: 10.1371/journal.pone.0043740. [31] BAIRD N A, ETTER P D, ATWOOD T S, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers[J]. PloS One, 2008, 3(10): e3376. DOI: 10.1371/journal.pone.0003376. [32] GUO F, YU H, TANG Z, et al. Construction of a SNP-based high-density genetic map for pummelo using RAD sequencing[J]. Tree Genetics & Genomes, 2015, 11(1): 1-11. DOI: 10.1007/s11295-014-0831-0. [33] 王莹. 利用RAD-seq测序构建美洲黑杨×小叶杨高密度遗传连锁图谱[D]. 南京:南京林业大学, 2014. WANG Y. Construction of a high-density linkage map of P. deltoides×P. simonii using restriction-site associated DNA sequencing[D]. Nanjing: Nanjing Forestry University. |