基于SLAF-seq技术的抗杨树叶锈病SNP位点开发

戴美丽,方乐成,尹佟明,李小平

南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (02) : 73-78.

PDF(1791857 KB)
PDF(1791857 KB)
南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (02) : 73-78. DOI: 10.3969/j.issn.1000-2006.201806020
研究论文

基于SLAF-seq技术的抗杨树叶锈病SNP位点开发

  • 戴美丽,方乐成,尹佟明,李小平*
作者信息 +

Devleopment of SNP molecular markers against the foliar rust of poplar using SLAF-seq technique

  • DAI Meili, FANG Lecheng, YIN Tongming, LI Xiaoping*
Author information +
文章历史 +

摘要

【目的】探索美洲黑杨抗叶锈病的分子机制,为杨树抗病分子育种提供理论参考。【方法】选取抗锈病差异显著的美洲黑杨‘2-2'与‘2-38'为亲本,通过控制授粉杂交获得80 个F1代个体。用特异性位点扩增(specific-locus amplified fragmenl sequencinq, SLAF-seq)简化基因组技术对所获F1代进行深度测序,以美洲黑杨第3代组装基因组为参照。通过序列比对筛选特异长度的DNA片段,构建SLAF-seq文库,获得特异性SNP位点。经美洲黑杨叶锈病的病原菌经形态学与分子工具鉴定,确定为落叶松-杨栅锈菌(Melampsora larici-populina Kleb.)。通过叶盘法控制条件接种并对被锈菌侵染后的杨树抗性进行评估; 应用Kruskal-Wallis方法对接种结果进行检验。【结果】通过接种,获得了孢子堆数量和大小等表型数据; 基于SNP标记的连锁分析,一共有8 723 个SNP连锁至遗传图谱上; 共识别出19 个连锁群,总遗传距离为3 610.67 cM; 通过Kruskal-Wallis检验可得到37 个紧密连锁位点(P<0.005),标记分别位于I、IV、VI、XI、XV和XIX号连锁群上。【结论】利用SLAF-seq技术开发出了37 个与杨树叶锈病抗病性状紧密关联的SNP分子标记,其中Marker42056位点连锁程度最高。

Abstract

【Objective】Explore the molecular mechanism of resistance to rust in Populus deltoides and provide the theoretical basis for the poplar molecular breeding.【Method】 In this study, eighty F1 progenies were selected for genetic analysis using P. detloides parents of ‘2-2'(female parent)and ‘2-38'(male parent)controlled pollination hybridization which possess substantial differences in resistance to rust. The F1 progeny were sequenced by SLAF-seq, using the third generation genome of P. deltoides as reference. Therefore, specific DNA fragments were extracted to construct the SLAF-seq library. Meanwhile, a great amount of specific SNP sites were identified. Melampsora larici-populina(Kleb.)that caused foliar rust of poplar were identified by morphylogy and molecular tools.And then the rust infection levels were evaluated under the control condition through leaf disk method. The data were analyzed with Kruskal-Wallis test.【Result】Leaf disks were inoculated with the rust and hold for at least eight days. Phenotypes of uredinial numbers and uredinial size were analyzed with the help of stereoscopy. Totally, 8 723 SNP tags are linked to genetic map and 19 linkage groups with a total genetic distance of 3 610.67 cM were identified through linkage analysis of SNP markers. Thirty-seven closely linked loci(P <0.005)are revealed and locates in linkage groups I, IV, VI, XI, XV and XIX respectively with Kruskal-Wallis test.【Conclusion】Thirty-seven loci were developed by SLAF-seq and found to be tightly linked with the rust resistance in P. deltoides and one of the loci, Marker42056, is the nearest to resistance site genetically.

引用本文

导出引用
戴美丽,方乐成,尹佟明,李小平. 基于SLAF-seq技术的抗杨树叶锈病SNP位点开发[J]. 南京林业大学学报(自然科学版). 2019, 43(02): 73-78 https://doi.org/10.3969/j.issn.1000-2006.201806020
DAI Meili, FANG Lecheng, YIN Tongming, LI Xiaoping. Devleopment of SNP molecular markers against the foliar rust of poplar using SLAF-seq technique[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2019, 43(02): 73-78 https://doi.org/10.3969/j.issn.1000-2006.201806020
中图分类号: S763.15   

参考文献


[1] TUSKAN G A, DIFAZIO S, JANSSON S, et al. The genome of black cottonwood, Populus trichocarpa(Torr. & Gray)[J]. Science,2006,313(5793):1596-1604. DOI:10.1126/science.1128691.
[2] MARMIROLI M, PIETRINI F, MAESTRI E, et al. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics[J]. Tree Physiology,2011,31(12):1319- 1334. DOI:10.1093/treephys/tpr090.
[3] 刘莉丽. 杨树对落叶松-杨栅锈菌的抗性研究[D]. 杨凌:西北农林科技大学,2009.
LIU L L. The study on the resistance of poplar to Melampsora larici-populina Kleb.[D]. Yangling: Northwest A & F University,2009.
[4] WAN Z B, LI Y R, LIU M, et al. Natural infectious behavior of the urediniospores of Melampsora larici-populina, on poplar leaves[J]. Journal of Forestry Research,2015,26(1):225-231. DOI:10.1007/s11676-015-0021-4.
[5] 马娥姣, 余仲东, 胥生荣,等. 落叶松-杨栅锈菌无性繁殖后代反应型及接种研究[J]. 中国森林病虫,2014,33(2):1-3. DOI:10.3969/j.issn.1671-0886.2014.02.001.
MA E J, YU Z D, XU S R,et al.Reaction type and inoculation of asexual reproduced isolates from Melampsora larici-populina Kleb.[J]. Forest Pest and Disease,2014,33(2):1-3.
[6] 姜渊忠. 杨树WRKY转录因子WRKY18、WRKY35和WRKY89在抗病过程中的功能分析[D]. 重庆:西南大学,2016.
JIANG Y Z. Functional characterization of PtrWRKY18, PtrWRKY35 and PtrWRKY89 transcription factors in poplar defense[D].Chongqing:Southwest University,2016.
[7] SAMILS B, RÖNNBERG-WÄSTLJUNG A C, STENLID J. QTL mapping of resistance to leaf rust in Salix[J]. Tree Genetics & Genomes,2011,7(6):1219-1235. DOI:10.1007/s11295-011-0408-0.
[8] YIN T M, DIFAZIO S P, GUNTER L E,et al. Genetic and physical mapping of Melampsora rust resistance genes in Populus and characterization of linkage disequilibrium and flanking genomic sequence[J]. New Phytologist,2004,164:95-105. DOI:10.1111/j.1469-8137.2004.01161.x.
[9] JORGE V, DOWKIW A, FAIVRERAMPANT P, et al. Genetic architecture of qualitative and quantitative Melampsora larici-populina leaf rust resistance in hybrid poplar: genetic mapping and QTL detection[J]. New Phytologist,2005,167(1):113-127. DOI:10.1111/j.1469-8137.2005.01424.x.
[10] WANG N, CAO P, XIA W, et al. Identification and characterization of long non-coding RNAs in response to early infection by Melampsora larici-populina, using genome-wide high-throughput RNA sequencing[J]. Tree Genetics & Genomes,2017,13(2):34. DOI:10.1007/s11295-017-1116-1.
[11] BARRÈS B, HALKETT F, DUTECH C, et al. Genetic structure of the poplar rust fungus Melampsora larici-populina: evidence for isolation by distance in Europe and recent founder effects overseas[J]. Infection Genetics & Evolution,2008,8(5):577-587. DOI:10.1016/j.meegid.2008.04.005.
[12] 万志兵, 方乐成, 李怡然,等. 美洲黑杨锈菌病原真菌的鉴定及致病性研究[J]. 分子植物育种, 2017, 14(7):2598-2603.DOI:10.1327/j.mpb.015.002598.
WAN Z B, FANG L C, LI Y R, et al.Identification and pathogenicity of fungus on Populus trichocarpa[J]. Molecular Plant Breeding, 2017, 14(7):2598-2603.
[13] PEI M H, RUIZ C, HARRIS J, et al. Quantitative inoculations of poplars with Melampsora larici-populina[J]. European Journal of Plant Pathology,2003,109(3):269-276. DOI:10.1023/A:1022822503139.
[14] 胡斌, 樊军锋, 高建设,等. 美洲黑杨与青杨、川杨和卜氏杨人工杂交及杂种苗生长和抗病性状测定[J]. 浙江农林大学学报,2009,26(6):778-783. DOI:10.3969/j.issn.2095-0756.2009.06.003.
HU B, FAN J F, GAO J S, et al. One-year-old seeding traits of Populus deltoides hybrids with P. cathayana, P. szechuanica, and P. purdomii[J]. Journal of Zhejiang Forestry College,2009,26(6):778-783.
[15] SUN X, LIU D, ZHANG X, et al. SLAF-seq: an efficient method of large-scale, De Novo, SNP discovery and genotyping using high-throughput sequencing[J]. Plos One,2013,8(3):e58700. DOI:10.1371/journal.pone.0058700.
[16] VAN O H, STAM P, VISSER R G et al.SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data[J]. Theoretical and Applied Genetics,2005,12:187-194. DOI:10.1007/s00122-005-0124-y.
[17] SHAH D A, MADDEN L V. Nonparametric analysis of ordinal data in designed factorial experiments[J]. Phytopathology,2004,94(1):33-43. DOI:10.1094/PHYTO.2004.94.1.33.
[18] GRONDIN J, BOURASSA M, HAMELIN R C. First report of the aecial state of Melampsora larici-populina on Larix spp. in North America.[J]. Plant Disease,2005,89(11):1242. DOI:10.1094/PD-89-1242B.
[19] TIAN C M, SHANG Y Z, ZHUANG J Y, et al. Morphological and molecular phylogenetic analysis of Melampsora, species on poplars in China[J]. Mycoscience,2004,45(1):56-66. DOI:10.1007/s10267-003-0150-z.
[20] ZHOU W, TANG Z, HOU J, et al. Genetic map construction and detection of genetic loci underlying segregation distortion in an intraspecific cross of Populus deltoides[J]. Plos One,2015,10(5):e0126077. DOI:10.1371/journal.pone.0126077.
[21] FREY P, GÉRARD P, FEAU N, et al. Variability and population biology of Melampsora rusts on poplars[M]// Rust diseases of Willow and Poplar. Germany CABI Publishing,2005:63-72. DOI:10.1079/9780851999999.0063.
[22] FLOR H H. Inheritance of pathogenicity in Melampsora lini[J]. Phytopathology,1942,32:653-669.
[23] HANLEY S J, PEI M H, POWERS S J, et al. Genetic mapping of rust resistance loci in biomass willow[J]. Tree Genetics & Genomes,2011,7(3):597-608. DOI:10.1007/s11295-010-0359-x.
[24] PETER N D, GREGORY J L, ANN M C, et al. The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells[J]. The Plant Cell,2004,16(3):755-768. DOI:10.1105/tpc.020040.
[25] ELLIS J G, DODDS P N, LAWRENCE G J. Flax rust resistance gene specificity is based on direct resistance-avirulence protein interactions[J]. Annual Review of Phytopathology,2007,45(1):289-306. DOI:10.1146/annurev.phyto.45.062806.094331.
[26] KEMEN E, KEMEN AC, RAFIQI M, et al. Identification of a protein from rust fungi transferred from haustoria into infected plant cells[J]. Molecular Plant Microbe Interactions,2005,18(11):1130-1139.DOI:10.1094/MPMI-18-1130.
[27] PRETSCH K, KEMEN A, KEMEN E, et al. The rust transferred proteins-a new family of effector proteins exhibiting protease inhibitor function[J]. Molecular Plant Pathology,2013,14(1):96-107. DOI:10.1111/j.1364-3703.2012.00832.x.
[28] UPADHYAYA N M, MAGO R, STASKAWICZ B J, et al. A bacterial type III secretion assay for delivery of fungal effector proteins into wheat[J]. Mol Plant Microbe Interactions,2014,27(3):255-264. DOI:10.1094/MPMI-07-13-0187-FI.
[29] LIU C, PEDERSEN C, SCHULTZ-LARSEN T, et al. The stripe rust fungal effector PEC6 suppresses pattern-triggered immunity in a host species-independent manner and interacts with adenosine kinases[J]. New Phytol,2016:1-13. DOI:10.1111/nph.14034.

基金

收稿日期:2018-06-13 修回日期:2018-11-22
基金项目:教育部“创新团队发展计划”(16400894)。
第一作者:戴美丽(932026829@qq.com)。
*通信作者:李小平(xpli@njfu.edu.cn),副教授,ORCID(0000-0002-0928-4092)。

PDF(1791857 KB)

Accesses

Citation

Detail

段落导航
相关文章

/