南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (01): 154-160.doi: 10.3969/j.issn.1000-2006.201807011
魏树和1,徐 雷1,2,韩 冉1,2,窦薛楷1,2,杨 微1,2
出版日期:
2019-01-28
发布日期:
2019-01-28
基金资助:
WEI Shuhe1, XU Lei1, 2, HAN Ran 1,2, DOU Xuekai 1,2, YANG Wei 1,2
Online:
2019-01-28
Published:
2019-01-28
摘要: 土壤电动修复是一种高效的原位修复技术。笔者就电场对植物富集重金属的作用、电场配置方式及其与添加剂的协同影响研究现状进行了分析。多数研究表明:选用合适的电场配置和电场强度,不仅能够提高土壤中重金属的有效性,进而促进植物对污染土壤中重金属的富集,而且对植物生物量具有一定的促进作用。总体来说,选用交流电场或是低强度的直流电场不仅能够提高重金属的生物有效性,还能够避免电场给植物造成的不利影响,是针对重金属污染土壤修复较好的选择。笔者认为,在重金属污染土壤植物修复领域,未来的研究重点在于加强超富集植物与电场联合修复机理研究,研发高效低廉环境友好型强化剂,最终形成针对一种或多种重金属污染土壤的植物-电动联合修复关键技术。
中图分类号:
魏树和,徐雷,韩冉,等. 重金属污染土壤的电动-植物联合修复技术研究进展[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 154-160.
WEI Shuhe, XU Lei, HAN Ran , DOU Xuekai , YANG Wei . Review on combined electrokinetic and phytoremediation technology for soil contaminated by heavy metal[J].Journal of Nanjing Forestry University (Natural Science Edition), 2019, 43(01): 154-160.DOI: 10.3969/j.issn.1000-2006.201807011.
[1] SARWAR N, IMRAN M, SHAHEEN M R, et al. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives[J]. Chemosphere, 2017, 171: 710-721. DOI:10.1016/j.chemosphere.2016.12.116. [2] PEPPICELLI C, CLEALL P, SAPSFORD D, et al. Changes in metal speciation and mobility during electrokinetic treatment of industrial wastes: implications for remediation and resource recovery[J]. Science of the Total Environment, 2017, 624: 1488-1503. DOI:10.1016/j.scitotenv.2017.12.132. [3] CAMESELLE C, CHIRAKKARA R A, REDDY K R. Electrokinetic-enhanced phytoremediation of soils: status and opportunities[J]. Chemosphere, 2013, 93(4): 626-636. DOI:10.1016/j.chemosphere.2013.06.029. [4] LOBO B M C, PREZ-SANZ A, MARTNEZ-IIGO M J, et al. Influence of coupled electrokinetic-phytoremediation on soil remediation[G]// Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater. New Jersey: John Willey & Sons Inc., 2009: 417-437. DOI:10.1002/9780470523650.ch20. [5] DERMONT G, BERGERON M, MERCIER G, et al. Soil washing for metal removal: a review of physical/chemical technologies and field applications[J]. Journal of Hazardous Materials, 2008, 152(1):1-31. DOI: 10.1016/j.jhazmat.2007.10.043. [6] HE R, XI G, LIU K. Alleviating effect of extremely low frequency pulsed electric field on drought damage of maize seedling roots[J]. Journal of Luminescence, 2017, 188: 441-447. DOI:10.1016/j.jlumin.2017.04.042. [7] QUAGLIARIELLO V, IAFFAIOLI R V, FALCONE M, et al. Effect of pulsed electric fields-assisted extraction on anti-inflammatory and cytotoxic activity of brown rice bioactive compounds[J]. Food Research International, 2016, 87:115-124. DOI: 10.1016/j.foodres.2016.07.005. [8] KAG S, HAMID N, OEY I, et al. Red cherries(Prunus avium var. stella)processed by pulsed electric field-physical, chemical and microbiological analyses[J]. Food Chemistry, 2018, 240:926-934. DOI: 10.1016/j.foodchem.2017.08.017. [9] LUO J, YANG D, QI S, et al. Using solar cell to phytoremediate field-scale metal polluted soil assisted by electric field[J]. Ecotoxicology and Environmental Safety, 2018,165:404-410. DOI:10.1016/j.ecoenv.2018.09.031. [10] O’CONNOR C S, LEPPI N W, EDWARDS R, et al. The combined use of electrokinetic remediation and phytoremediation to decontaminate metal-polluted soils: a laboratory-scale feasibility study[J]. Environmental Monitoring & Assessment, 2003, 84(1/2):141-158. DOI: 10.1023/A:1022851501118. [11] LIM J M, SALIDO A L, BUTCHER D J. Phytoremediation of lead using Indian mustard(Brassica juncea)with EDTA and electrodics[J]. Microchemical Journal, 2004, 76(1):3-9. DOI: 10.1016/j.microc.2003.10.002. [12] 仓龙, 周东美, 吴丹亚. 水平交换电场与EDDS螯合诱导植物联合修复Cu/Zn污染土壤[J]. 土壤学报, 2009, 46(4):729-735. DOI: 10.11766/trxb200710170424. CANG L, ZHOU D M, WU D Y. Effects of horizontal exchange electric field and edds application on ryegrass uptake of copper/zinc and soil characteristics[J]. Acta Pedologica Sinica, 2009, 46(4):729-735. [13] ABOUGHALMA H, BI R, SCHLAAK M. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants[J]. Journal of Environmental Science and Health, Part A: Hazard Subst Environ Eng, 2008, 43(8): 926-933.DOI: 10.1080/10934520801974459. [14] BI R, SCHLAAK M, SIEFERT E, et al.Influence of electrical fields(AC and DC)on phytoremediation of metal polluted soils with rapeseed(Brassica napus)and tobacco(Nicotiana tabacum)[J]. Chemosphere, 2011, 83(3):318-326.DOI: 10.1016/j.chemosphere.2010.12.052. [15] CANG L, WANG Q, ZHOU D, et al. Effects of electrokinetic-assisted phytoremediation of a multiple-metal contaminated soil on soil metal bioavailability and uptake by Indian mustard[J]. Separation and Purification Technology, 2011, 79(2): 246-253. DOI: 10.1016/j.seppur.2011.02.016. [16] PUTRA R S, OHKAWA Y, TANAKA S.Application of EAPR system on the removal of lead from sandy soil and uptake by Kentucky bluegrass(Poa pratensis L.)[J]. Separation and Purification Technology, 2013, 102(1):34-42. DOI: 10.1016/j.seppur.2012.09.025. [17] CHIRAKKARA R A, REDDY K R, CAMESELLE C. Electrokinetic amendment in phytoremediation of mixed contaminated soil[J]. Electrochimica Acta, 2015, 181:179-191. DOI: 10.1016/j.electacta.2015.01.025. [18] 肖文丹, 叶雪珠, 徐海舟,等. 直流电场与添加剂强化东南景天修复镉污染土壤[J]. 土壤学报, 2017, 54(4):927-937. DOI:10.11766/trxb201612130539. XIAO W D, YE X Z, XU H Z, et al. Intensification of phytoremediation of Cd contaminated soil with direct current field and soil amendments in addition to hyperaccumulator Sedum alfredii[J]. Acta Pedologica Sinica, 2017, 54(4):927-937. [19] LUO J, CAI L, QI S, et al. Influence of direct and alternating current electric fields on efficiency promotion and leaching risk alleviation of chelator assisted phytoremediation[J]. Ecotoxicol Environ Saf, 2018, 149:241-247.DOI: 10.1016/j.ecoenv.2017.12.005. [20] CANG L, ZHOU D M, WANG Q Y, et al.Impact of electrokinetic-assisted phytoremediation of heavy metal contaminated soil on its physicochemical properties, enzymatic and microbial activities[J]. Electrochimica Acta, 2012, 86(4):41-48. DOI: 10.1016/j.electacta.2012.04.112. [21] MIRANSARI M.Soil microbes and plant fertilization[J]. Applied Microbiology and Biotechnology, 2011, 92(5):875-885. DOI: 10.1007/s00253-011-3521-y. [22] LUO Q, ZHANG X, WANG H, et al.The use of non-uniform electrokinetics to enhance in situ bioremediation of phenol-contaminated soil[J]. Journal of Hazardous Materials, 2005, 121(1):187-194. DOI: 10.1016/j.jhazmat.2005.02.007. [23] ACOSTA-SANTOYO G, CAMESELLE C, BUSTOS E. Electrokinetic-Enhanced ryegrass cultures in soils polluted with organic and inorganic compounds[J]. Environmental Research, 2017, 158:118. DOI: 10.1016/j.envres.2017.06.004. [24] HUANG J W, SHAFF J E, GRUNES D L, et al. Aluminum effects on calcium fluxes at the root apex of aluminum-tolerant and aluminum-sensitive wheat cultivars[J]. Plant Physiology, 1992, 98(1):230-237. DOI: 10.1104/pp.98.1.230. [25] CHO M R, THATTE H S, SILVIA M T, et al.Transmembrane calcium influx induced by ac electric fields.[J]. Faseb Journal, 1999, 13(6):677. DOI: 10.1096/fasebj.13.6.677. [26] 姚桂华. 交流电场-有机物料提高东南景天修复重金属污染土壤效率的研究[D]. 临安:浙江农林大学, 2015. YAO G H. Effects of alternating current(AC)field and organic materials on improving the efficiency of Sedum alfredii Hance to remediate heavy metal contaminated soil[D]. Lin’an:Zhejiang A & F University, 2015. [27] ROJANAPITHAYAKORN D, ARIYAKANON N. Electrokinetic enhancement on phytoremediation in Zinc contaminated soil by ruzi grass[J]. Environmentasia, 2016, 9(1). DOI: 10.14456/ea.1473.11. [28] 方振东, 汪家权, 盛晶梦. 不同电极电动修复铜镉复合污染土壤的研究[J]. 广东化工, 2014, 41(13):23-24. DOI:10.3969/j.issn.1007-1865.2014.13.011. FANG Z D, WANG J Q, SHENG J M. Research on electrokinetic remediation of copper and cadmium contaminated soil with different electrodes[J]. Guangdong Chemical Industry, 2014, 41(13):23-24. [29] 黄益宗, 郝晓伟, 雷鸣,等. 重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 2013, 3(3):409-417. DOI:10.11654/jaes.2013.03.001. HUANG Y Z, HAO X W, LEI M, et al. The remediation technology and remediation practice of heavy metals-contaminated soil[J]. Journal of Agro-Environment Science, 2013, 3(3):409-417. [30] LóPEZ-VIZCAíNO R, RISCO C, ISIDRO J, et al.Scale-up of the electrokinetic fence technology for the removal of pesticides. Part I: some notes about the transport of inorganic species[J]. Chemosphere, 2017, 166:540-548.DOI: 10.1016/j.chemosphere.2016.09.113. [31] ZHOU D M, CHEN H F, CANG L, et al.Ryegrass uptake of soil Cu/Zn induced by EDTA/EDDS together with a vertical direct-current electrical field[J]. Chemosphere, 2007, 67(8):1671-1676. DOI: 10.1016/j.chemosphere.2006.11.042. [32] HODKO D, HYFTE J V, DENVIR A, et al. Methods for enhancing phytoextraction of contaminants from porous media using electrokinetic phenomena: US, 6145244[P]. 2000-11-14. [2018-11-05]http://www.freepaterotonline.com/6145244.pdf. [33] LAI H Y, CHEN Z S. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink(Dianthus chinensis)[J]. Chemosphere, 2005, 60(8):1062-1071.DOI: 10.1016/j.chemosphere.2005.01.020. [34] KIM S H, LEE I S. Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of metals from a multi-metal contaminated soil[J]. Bull Environ Contam Toxicol, 2010, 84(2):255-259. DOI: 10.1007/s00128-009-9888-0. [35] LIM J M, JIN B, BUTCHER D J. A Comparison of electrical stimulation for electrodic and EDTA-enhanced phytoremediation of lead using Indian mustard(Brassica juncea)[J]. Bulletin of the Korean Chemical Society, 2012, 33(33):2737-2740. DOI: 10.5012/bkcs.2012.33.8.2737. [36] EBRAHIMI M. Effect of EDTA and DTPA on phytoremediation of Pb-Zn contaminated soils by Eucalyptus camaldulensis Dehnh and effect on treatment time.[J]. Desert, 2014. DOI: 10.22059/JDESERT.2014.51055. [37] 徐海舟. 直流电场-东南景天联合修复Cd污染土壤效率的研究[D]. 临安:浙江农林大学, 2015. XU H Z. Efficiency of direct current(DC)field and Sedum alfredii Hance on remediation to cadmium contaminated soil[D].Lin’an:Zhejiang A & F University, 2015. [38] SINEGANI A A S, TAHNASBIAN I, SINEGANI M S. Chelating agents and heavy metal phytoextraction[G]// Heavy Metal Contamination of Soils. Berlin: Springer International Publishing, 2015:367-393. DOI: 10.1007/978-3-319-14526-6. |
[1] | 谢燕燕, 郭子武, 林树燕, 左珂怡, 杨丽婷, 徐森, 谷瑞, 陈双林. 毛竹林下植被演替过程中土壤颗粒组成与水分入渗特征[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 108-116. |
[2] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[3] | 左壮, 张韫, 崔晓阳. 火烧对兴安落叶松林土壤氮形态和含量的初期影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 147-154. |
[4] | 孙劲伟, 王圣燕, 范弟武, 朱咏莉. C源与NP添加对Cd胁迫下林地土壤呼吸作用的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 140-146. |
[5] | 陈明, 刘亮. 采样间隔对城市表土剖面磁化率变化的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 61-69. |
[6] | 张相, 丁鸣鸣, 林杰, 李卓远, 崔琳琳, 郭赓, 杨皓. 水蚀作用下红壤丘陵区土壤特性的空间分异特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 77-84. |
[7] | 杨瑞, 吴朝明, 朱骊, 胡海波. 苏南丘陵区坡面经济林土壤侵蚀特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 70-76. |
[8] | 徐子涵, 王磊, 崔明, 刘玉国, 赵紫晴, 李嘉豪. 南水北调水源区不同植被恢复模式的土壤化学计量特征[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 173-181. |
[9] | 杜志琦, 孟庆繁, 冯立超, 葛佳荣, 黄劲斌, 史晶晶, 李洪锐, 岑祖才. 冷藏条件下土样保存时间对甲螨(甲螨亚目)和跳虫(弹尾纲)类物种分离的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 213-218. |
[10] | 卢伟伟, 胡嘉欣, 陈思桦, 陈玮铃, 冯思宇. 苏北滨海土壤无机碳含量的测定方法比较[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 76-82. |
[11] | 杨永超, 段文标, 陈立新, 曲美学, 王亚飞, 王美娟, 石金永, 潘磊. 模拟氮磷沉降和凋落物处理对两种林型红松林土壤有机碳组分的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 57-66. |
[12] | 薛建辉, 周之栋, 吴永波. 喀斯特石漠化山地退化土壤生态修复研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 135-145. |
[13] | 林杰, 张相, 姜姜, 蒯杰, 郭赓, 孟苗婧, 李肖. 水力侵蚀过程中土壤有机碳循环研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 187-194. |
[14] | 李惠芝, 关庆伟, 赵家豪, 李俊杰, 王磊, 李凤凤, 左兴平, 陈斌. 地形对麻栎人工林土壤肥力质量的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 161-168. |
[15] | 赵凯歌, 周正虎, 金鹰, 王传宽. 长期氮添加对落叶松和水曲柳人工林土壤碳、氮、磷含量和胞外酶活性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 177-184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||