[1] |
孙梅, 田昆, 张贇, 等. 植物叶片功能性状及其环境适应研究[J]. 植物科学学报, 2017, 35(6):940-949.DOI: 10.11913/PSJ.2095-0837.2017.60940.
|
|
SUN M, TIAN K, ZHANG Y, et al. Research on leaf functional traits and their environmental adaptation[J]. Plant Science Journal, 2017, 35(6):940-949.
|
[2] |
张文旭. 紫花苜蓿荚的光合性能及产物转运作用机理研究[D]. 北京:中国农业大学, 2014.
|
|
ZAHNG W X. Study on pod photosynthesis and photosynthate transporting and acting mechanism in alfalfa[D]. Beijing: China Agricultural University, 2014.
|
[3] |
孟军, 陈温福, 徐正进, 等. 水稻剑叶净光合速率与叶绿素含量的研究初报[J]. 沈阳农业大学学报, 2001, 32(4):247-249.DOI: 10.3969/j.issn.1000-1700.2001.04.002.
|
|
MENG J, CHEN W F, XU Z J, et al. Study on photosynthetic rate and chlorophyll content[J]. Journal of Shenyang Agricultural University, 2001, 32(4):247-249.
|
[4] |
毛剑飞, 李凯伟, 杨再强, 等. 弱光胁迫及强光恢复对设施红地球葡萄叶片光合及衰老特性的影响[J]. 江苏农业科学, 2018, 46(6):105-111.DOI: 10.15889/j.issn.1002-1302.2018.06.027.
|
|
MAO J F, LI K W, YANG Z Q, et al. Effects of weak light stress and strong light recovery on photosynthetic and senescence characteristics of grape leaves in greenhouse[J]. Jiangsu Agricultural Sciences, 2018, 46(6):105-111.
|
[5] |
王复标. 水稻早衰突变体(psf)叶片衰老形成与衰老速率调控的生理机制研究[D]. 杭州: 浙江大学, 2017.
|
|
WANG F B. Physiological mechanism of leaf senescence formation and its metabolic regulation in premature senescence rice(psf) mutant leaves[D]. Hangzhou: Zhejiang University, 2017.
|
[6] |
周建平. 植物衰老相关基因的克隆与分析[D]. 成都: 电子科技大学, 2007.
|
|
ZHOU J P. Cloning and analysis of the senescence-associated genes from plants[D]. Chengdu: University of Electric Science and Technology of China, 2007.
|
[7] |
LI Z H, PENG J Y, WEN X, et al. Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf SenescenceF[J]. Journal of Integrative Plant Biology, 2012, 54(8):526-539.
doi: 10.1111/jipb.2012.54.issue-8
|
[8] |
刘连涛, 李存东, 孙红春, 等. 棉花叶片衰老生理研究进展[J]. 中国农学通报, 2006, 22(7):316-321. DOI: 10.3969/j.issn.1000-6850.2006.07.082.
|
|
LIU L T, LI C D, SUN H C, et al. Advances of research on cotton leaf senescence physiology[J]. Chinese Agricultural Science Bulletin, 2006, 22(7):316-321.
|
[9] |
HUNG K T, KAO C H. Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves[J]. Journal of Plant Physiology, 2004, 161(12):1347-1357. DOI: 10.1016/j.jplph.2004.05.011.
doi: 10.1016/j.jplph.2004.05.011
|
[10] |
张林, 罗天祥. 植物叶寿命及其相关叶性状的生态学研究进展[J]. 植物生态学报, 2004, 28(6):844-852. DOI: 10.17521/cjpe.2004.0110.
doi: 10.17521/cjpe.2004.0110
|
|
ZHANG L, LUO T X. Advances in ecological studies on leaf lifespan and associated leaf traits[J]. Acta Phytoecologica Sinica, 2004, 28(6):844-852.
|
[11] |
REICH P B, UHL C, WALTERS M B, et al. Leaf lifespan as a determinant of leaf structure and function among 23 amazonian tree species[J]. Oecologia, 1991, 86(1):16-24. DOI: 10.1007/bf00317383.
doi: 10.1007/BF00317383
|
[12] |
段俊, 梁承邺, 黄毓文. 杂交水稻开花结实期间叶片衰老[J]. 植物生理学报, 1997, 23(2):139-144.DOI: 10.3321/j.issn:1671-3877.1997.02.006.
|
|
DUAN J, LIANG C Y, HUANG Y W. Studies on leaf senescence of hybrid rice at flowering and grain formation stage[J]. Acta Photophysiologica Sinica, 1997, 23(2):139-144.
|
[13] |
NAVABPOUR S. Expression of senescence-enhanced genes in response to oxidative stress[J]. Journal of Experimental Botany, 2003, 54(391):2285-2292. DOI: 10.1093/jxb/erg267.
doi: 10.1093/jxb/erg267
|
[14] |
孙玉莹, 毕京翠, 赵志超, 等. 作物叶片衰老研究进展[J]. 作物杂志, 2013(4):11-19. DOI: 10.16035/j.issn.1001-7283.2013.04.006.
|
|
SUN Y Y, BI J C, ZHAO Z C, et al. The advancement on leaf senescence in crops[J]. Crops, 2013(4):11-19.
|
[15] |
刘道宏. 植物叶片的衰老[J]. 植物生理学通讯, 1983, 19(2):14-19. DOI: 10.13592/j.cnki.ppj.1983.02.004.
|
[16] |
李绍臣, 高福玲, 姜廷波, 等. 基于RAPD标记的白桦遗传连锁群分析[J]. 林业科学, 2008, 44(5):155-159. DOI: 10.3321/j.issn:1001-7488.2008.05.028.
|
|
LI S C, GAO F L, JIANG T B, et al. Analysis of genetic linkage groups on birch using RAPD markers[J]. Scientia Silvae Sinicae, 2008, 44(5):155-159.
|
[17] |
HUANG H J, WANG S, JIANG J, et al. Overexpression of BpAP1induces early flowering and produces dwarfism in Betula platyphylla×Betula pendula[J]. Physiologia Plantarum, 2014, 151(4):495-506. DOI: 10.1111/ppl.12123.
doi: 10.1111/ppl.2014.151.issue-4
|
[18] |
ZHANG W B, WEI R, CHEN S, et al. Functional characterization of CCRin birch (Betula platyphylla×Betula pendula) through overexpression and suppression analysis[J]. Physiologia Plantarum, 2015, 154(2):283-296. DOI: 10.1111/ppl.12306.
doi: 10.1111/ppl.2015.154.issue-2
|
[19] |
XU W D, HAN R, XU S J, et al. Expression of BpIAA10 from Betula platyphylla (birch) is differentially regulated by different hormones and light intensities[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2018, 132(2):371-381. DOI: 10.1007/s11240-017-1336-y.
doi: 10.1007/s11240-017-1336-y
|
[20] |
LIN L, YAO Q C, XU H W, et al. Characteristics of the staminate flower and pollen from autotetraploid Betula platyphylla[J]. Dendrobiology, 2012, 69:3-11. DOI: 10.12657/denbio.069.001.
doi: 10.12657/denbio.069.001
|
[21] |
LIU C Y, XU H W, JIANG J, et al. Analysis of the promoter features of BpCUC2 in Betula platyphylla×Betula pendula[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2018, 132(1):191-199. DOI: 10.1007/s11240-017-1324-2.
doi: 10.1007/s11240-017-1324-2
|
[22] |
YANG G, CHEN S, JIANG J. Transcriptome analysis reveals the role of BpGH3.5 in root elongation of Betula platyphylla×B. pendula[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2015, 121(3):605-617. DOI: 10.1007/s11240-015-0731-5.
doi: 10.1007/s11240-015-0731-5
|
[23] |
YANG G, CHEN S, WANG S, et al. BpGH3.5, an early auxin-response gene, regulates root elongation in Betula platyphylla×Betula pendula[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2015, 120(1):239-250. DOI: 10.1007/s11240-014-0599-9.
doi: 10.1007/s11240-014-0599-9
|
[24] |
龚盼, 黎坤瑜, 黄福灯, 等. 水稻叶片早衰突变体ospls3的生理特征和基因定位[J]. 作物学报, 2016, 42(5):667-674. DOI: 10.3724/SP.J.1006.2016.00667.
|
|
GONG P, LI K Y, HUANG F D, et al. Physiological characteristics and gene mapping of a precocious leaf senes-cence mutant ospls3 in rice [J]. Acta Agronomica Sinica, 2016, 42(5):667-674.
|
[25] |
王复标. 水稻早衰突变体(psf)叶片衰老形成与衰老速率调控的生理机制研究[D]. 杭州: 浙江大学, 2017.
|
|
WANG F B. Physiological mechanism of leaf senescence formation and its metabolic regulation in premature senescence rice(psf) mutant leaves[D]. Hangzhou: Zhejiang University, 2017.
|
[26] |
王平荣, 张帆涛, 高家旭, 等. 高等植物叶绿素生物合成的研究进展[J]. 西北植物学报, 2009, 29(3):629-636. DOI: 10.3321/j.issn:1000-4025.2009.03.032.
|
|
WANG P R, ZHANG F T, GAO J X, et al. An overview of chlorophyll biosynjournal in higher plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(3):629-636.
|
[27] |
王复标, 黄福灯, 程方民, 等. 水稻生育后期叶片早衰突变体的光合特性与叶绿体超微结构观察[J]. 作物学报, 2012, 38(5):871-879.
|
|
WANG F B, HUANG F D, CHENG F M, et al. Photosynjournal and chloroplast ultra-structure characteristics of flag leaves for a premature senescence rice mutant[J]. Acta Agronomica Sinica, 2012, 38(5):871-879.
|
[28] |
罗瑶年, 张建华, 李霞. 玉米叶片的衰老[J]. 玉米科学, 1992(12):40-43,47. DOI: 10.13597/j.cnki.maize.science.1992.00.012.
|
[29] |
唐翠平, 乌拉, 袁思安, 等. 沙棘人工林早衰及其更新复壮[J]. 西北林学院学报, 2014, 29(5):47-52. DOI: 10.3969/j.issn.1001-7461.2014.05.09.
|
|
TANG C P, WU L, YUAN S A, et al. Premature senescence and rejuvenation of Hippophae ssp.plantation [J]. Journal of Northwest Forestry University, 2014, 29(5):47-52.
|