
杨树不同根序细根形态对酚酸的响应
董玉峰, 朱婉芮, 丁昌俊, 黄秦军, 王华田, 李善文, 王延平
南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (1) : 39-46.
杨树不同根序细根形态对酚酸的响应
Root order-dependent responses of poplar fine root morphology to phenolic acids
【目的】细根生长与森林生产力的关系十分密切,而酚酸在根际的累积可能影响杨树根系形态建成及生物量分配进而影响生产力。笔者通过模拟杨树人工林根际酚酸环境,探究杨树幼苗根系形态建成对酚酸的响应,深入揭示根-土界面性质改变对林木根系生长的影响,为探明人工林根际过程和林分生产力之间的关系提供参考。【方法】以改良Hoagland 营养液为基础,参照连作二代杨树人工林土壤酚酸含量配制溶液并进行杨树幼苗培养。采集杨树幼苗根系,按50%的比例选取细根 (根径D < 2 mm) 样本并按根序进行分级,制作1~5级根序细根石蜡横剖面切片。采用根系扫描仪结合分析软件获得各根序细根的长度、直径,利用光学显微镜观察各根序细根的剖面直径、维管束(中柱)直径等参数,并计算比根长、根组织密度、维根比等。采用Origin Pro 8.0进行数据的差异显著性检验并作图,分析细根形态特征和剖面结构参数的相关性。 【结果】酚酸处理显著减少了杨树幼苗根系生物量。1~5级根序细根的生物量在对照和酚酸处理间无显著差异,但其所占生物量比例显著增加。酚酸处理总体抑制了杨树幼苗细根的伸长生长,1~3级根序细根的长度显著低于对照。酚酸处理具有增大杨树根系直径的效应,但1~5级根序细根的表面积在酚酸处理下均较对照显著下降。酚酸处理显著影响了杨树幼苗各根序细根的比根长和根组织密度,使比根长显著下降而根组织密度显著增大。此外,酚酸显著影响了杨树幼苗根系的生长发育,酚酸处理下1~5级根序细根的维根比显著增大,根系内输导组织分化显著。【结论】酚酸对杨树细根生长发育具有一定抑制作用,酚酸处理下不同根序细根形态的变化体现了根系功能的改变,这将影响根系吸收进而对杨树地上部分的生长产生抑制。不同根序细根形态建成的差异性也在一定程度上反映出酚酸影响下杨树根系的生长策略。
【Objective】 Forest productivity is closely related to fine root growth, and in this study, we simulated field concentrations of phenolic acids to examine the morphological responses of poplar seedling roots to phenolic acids. The objective was to provide in-depth insights into the rhizosphere effects of tree roots. 【Method】 Using an improved Hoagland solution, we generated phenolic acid environments designed to reflect the contents of phenolic acids in the soils of a successive rotation poplar plantation. All roots of poplar seedlings were harvested and 50% of the fine roots (diameter < 2 mm) were sampled and grouped according to order. A WINRHIZO root system analyzer and associated software were used to determine the morphological traits, including root length and diameter, of each fine root order (orders 1-5). Permanent paraffin cross-sections of fine roots of each order were prepared to observe anatomical traits, such as cross-section diameter and vascular cylinder (stele) diameter. Finally, several important parameters related to fine root morphology, including specific root length (SRL), root tissue density (RTD), and the ratio of vascular cylinder to cross-section area were calculated. Origin Pro 8.0 software was employed for data analysis and MS Excel was used to analyze the relationship between root morphology and the cross-section structures of the different fine root orders. 【Result】 We found that poplar roots biomass (dry weight) was significantly reduced after phenolic acid treatment. Although the biomass of fine root orders 1 to 5 showed no significant difference between the control check (CK) and phenolic acid treatments, the ratio of fine roots to total roots was significantly higher in seedlings receiving phenolic acid treatment than that of CK seedlings. Phenolic acids inhibited the elongation growth of fine roots, with the lengths of fine root orders 1 to 3 being significantly reduced under phenolic acid treatment. Furthermore, seedlings treated with phenolic acids showed an increase in fine root diameter, whereas the surface areas of fine root orders 1 to 5 were smaller under phenolic acid treatment than that of CK seedlings. Phenolic acids also affected the SRL and RTD, with the former being reduced and the latter increased in response to treatment. The anatomical traits of poplar roots were significantly altered under phenolic acid treatment, and the ratios of vascular cylinder to cross-section diameter of the roots of each order were increased, thereby indicating significant changes in the transport tissues of fine roots.【Conclusion】 Phenolic acids were found to have significant inhibitory effects on the fine root growth and development of poplar cuttings. The changes in fine root morphology revealed the variability in roots function under phenolic acid treatment, which would affect the absorptive function of fine roots and further inhibit the above-ground biomass growth of poplar. Furthermore, we characterized the strategies of tree root development and growth investment in response to phenolic acids with respect to differences in fine root morphology among different root orders.
杨树 / 细根形态 / 细根生物量 / 解剖特征 / 根序 / 酚酸
poplar / fine root morphology / fine root biomass / anatomical trait / root order / phenolic acid
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
孙悦, 徐兴良,
土壤激发效应是指由各种有机物质添加等处理所引起的土壤有机质周转强烈的短期改变。根际是激发效应最主要也是最重要的发生部位。根际激发效应能够反映生态系统土壤碳氮周转的速度, 并影响植物、土壤微生物等对养分的获取和竞争, 维持生态系统各组分间的养分平衡。虽然对根际激发效应的产生机制已取得一定程度的认知, 但是对根际激发效应在土壤碳氮转化过程中的作用机理及其生态重要性依然缺乏足够的理解。该文在论述激发效应的研究历史和主要发生部位的基础上对最新研究进展进行了综合分析, 提出了一个具体的根际激发效应的发生机制, 深入剖析了影响根际激发效应的生物与非生物因素, 并阐释了根际激发效应的生态重要性, 对未来根际激发效应的研究方向进行了展望。
|
[9] |
|
[10] |
|
[11] |
|
[12] |
谭秀梅, 王华田, 孔令刚, 等. 杨树人工林连作土壤中酚酸积累规律及对土壤微生物的影响[J]. 山东大学学报(理学版), 2008, 43(1):14-19.
|
[13] |
王延平, 王华田, 许坛, 等. 酚酸对杨树人工林土壤养分有效性及酶活性的影响[J]. 应用生态学报, 2013, 24(3):667-674.
|
[14] |
许坛, 王华田, 王延平, 等. 杨树人工林土壤养分有效性变化及其与土壤细菌群落演变的相关性[J]. 应用与环境生物学报, 2014, 20(3):491-498.
|
[15] |
王华田, 王延平. 关于连作人工林衰退机理几个热点问题的探讨[J]. 山东大学学报(理学版), 2013, 48(7):1-8.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
孔垂华. 植物化感作用研究中应注意的问题[J]. 应用生态学报, 1998, 9(3):332-336.
|
[22] |
|
[23] |
|
[24] |
杨阳, 王华田, 王延平, 等. 外源酚酸对杨树幼苗根系生理和形态发育的影响[J]. 林业科学, 2010, 46(11):73-80.
|
[25] |
刘佳, 项文化, 徐晓, 等. 湖南会同5个亚热带树种的细根构型及功能特征分析[J]. 植物生态学报, 2010, 34(8):938-945.
细根(直径Cyclobalanopsis glauca)、枫香 (Liquidanbar formosana)、拟赤杨(Alniphyllum fortunei)、杉木(Cunninghamia lanceolata)、马尾松(Pinus massoniana)等5个亚热带树种, 用挖掘法采集完整的细根根系, 按照Pregitzer细根分级方法对细根分级, 用Win-RHIZO根系测定系统对细根构型的参数进行测定, 同时测定各级根系的C、N含量, 以探讨各树种各级细根的功能特征, 揭示不同树种细根构型与养分策略之间的关系。结果表明: 5个亚热带树种细根1级根比根长、比表面积最高, 直径最细; 3级根比根长、比表面积最低, 直径最粗。不同树种之间细根形态特征和构型也表现出差异性: 枫香的1级根序比根长最大, 为31.45 m·g<sup>–1</sup>, 杉木的最小, 为16.34 m·g<sup>–1</sup>,枫香和杉木之间差异显著。马尾松的1、2级根序的比表面积最大, 杉木的1级根序的比表面积最小, 青冈2级根序的比表面积最小, 3级根序比表面积杉木最大, 青冈最小。不同树种之间的细根直径差异达到极显著水平, 各根序的平均直径以杉木的最大, 拟赤杨的最小。5个树种细根根尖密度大小顺序为马尾松>青冈>枫香>杉木>拟赤杨, 各树种细根分叉数以拟赤杨和马尾松的较高, 杉木最低。除杉木和枫香外, 5个树种细根C含量均呈现出随着根序上升而增加的趋势, C/N比也随根序的上升而增加, 而细根N含量呈现出随着根序上升而明显下降的趋势。细根平均C含量以杉木的最高, 拟赤杨的最低, 马尾松、青冈与枫香之间的差异不显著。细根平均N含量以拟赤杨的最高, 马尾松的最低。C/N比以马尾松的最高, 拟赤杨的最低。5个树种中,马尾松的外生菌根有很强的拓展能力, 因此能显著地增强植物根系的养分、水分吸收能力, 即使在贫瘠和干旱的土壤环境中,也能有效地利用有限的养分和水分, 促进个体生长。而杉木细根吸收养分和水分的效率及能力最小。
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
严小龙, 廖红, 年海. 根系生物学: 原理与方法[M]. 北京: 科学出版社, 2007.
|
[32] |
|
[33] |
|
/
〈 |
|
〉 |