[1] LOEHLE C, IDSO C, WIGLEY T. Physiological and ecological factors influencing recent trends in United States forest health responses to climate change[J]. Forest Ecology and Management,2016, 363:179-189. DOI:10.1016/j.foreco.2015.12.042. [2] 高广磊,信忠保,丁国栋,等.基于遥感技术的森林健康研究综述[J]. 生态学报,2013,33(6):1675-1689. DOI:10.5846/stxb201112011838. GAO G L, XIN Z B, DING G D, et al. Forest health studies based on remote sensing: a review[J]. Acta Ecologica Sinica,2013, 33(6):1675-1689. [3] PAUSE M, SCHWEITZER C, ROSENTHAL M, et al. In situ/remote sensing integration to assess forest health-a review[J]. Remote Sensing, 2016, 8(6):471. DOI:10.3390/rs8060471. [4] 程希萌,沈占锋,邢廷炎,等.基于mRMR特征优选算法的多光谱遥感影像分类效率精度分析[J].地球信息科学学报,2016,18(6):815-823. DOI:10.3724/SP.J.1047.2016.00815. CHENG X M, SHEN Z F, XING T Y, et al. Efficiency and accuracy analysis of multispectral image classification based on mRMR feature selection method [J]. Journal of Geo-Information Science,2016,18(6):815-823. [5] 熊艳,高仁强,徐战亚.机载LiDAR点云数据降维与分类的随机森林方法[J].测绘学报, 2018,47(4):508-518.DOI:10.11947/j.AGCS.2018.20170417. XIONG Y, GAO R Q, XU Z Y. Random forest method for dimension reduction and point cloud classification based on airborne LiDAR [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(4): 508-518. [6] 贾坤,李强子.农作物遥感分类特征变量选择研究现状与展望[J].资源科学,2013,35(12):2507-2516. JIA K, LI Q Z. Review of features selection in crop classification using remote sensing data[J]. Resources Science,2013,35(12):2507-2516. [7] 马玥,姜琦刚,孟治国,等.基于随机森林算法的农耕区土地利用分类研究[J].农业机械学报,2016,47(1):297-303.DOI:10.6041/j.issn.1000-1298.2016.01.040. MA Y, JIANG Q G, MENG Z G, et al. Classification of land use in farming area based on random forest algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1):297-303. [8] STROBL C, BOULESTEIX A L, KNEIB T, et al. Conditional variable importance for random forests[J]. BMC Bioinformatics, 2008,9:307. DOI:10.1186/1471-2105-9-307. [9] STROBL C, BOULESTEIX A L, ZEILEIS A, et al. Bias in random forest variable importance measures: illustrations, sources and a solution[J]. BMC Bioinformatics, 2007,8:25. DOI:10.1186/1471-2105-8-25. [10] STROBL C, BOULESTEIX A L, AUGUSTIN T. Unbiased split selection for classification trees based on the Gini index[J]. Computational Statistics & Data Analysis, 2007,52(1):483-501. DOI:10.1016/j.csda.2006.12.030. [11] ROY D P, WULDER M A, LOVELAND T R, et al. Landsat-8: science and product vision for terrestrial global change research[J]. Remote Sensing of Environment, 2014(145):154-172. DOI:10.1016/j.rse.2014.02.001. [12] 全国国土资源标准化技术委员会. 土地利用现状分类:GB/T 21010-2017[S].北京:中国标准出版社,2017. National Standardization Technical Committee of National Land and Resources.Current land use classification:GB/T 21010-2017[S]. Beijing: Standards Press of China,2017. [12] 国家林业局. 林业资源分类与代码 森林类型:GB/T 14721-2010[S].北京:中国标准出版社,2010. State Forestry Administration. Classification and codes for forestry resources—forest types:GB/T 14721-2010[S]. Beijing: Standards Press of China,2010. [14] 李梦颖,邢艳秋,刘美爽,等.基于支持向量机的Landsat-8影像森林类型识别研究[J].中南林业科技大学学报,2017,37(4):52-58. DOI:10.14067/j.cnki.1673-923x.2017.04.009. LI M Y, XING Y Q, LIU M S, et al. Identification of forest type with Landsat-8 image based on SVM [J]. Journal of Central South University of Forestry & Technology, 2017,37(4):52-58. [15] BREIMAN L. Random forests[J]. Machine Learning, 2001,45(1):5-32. DOI:10.1023/A:1010933404324. [16] 陈元鹏,罗明,彭军还,等.基于网格搜索随机森林算法的工矿复垦区土地利用分类[J].农业工程学报,2017,33(14):250-257. DOI:10.11975/j.issn.1002-6819.2017.14.034. CHEN Y P, LUO M, PENG J H, et al. Classification of land use in industrial and mining reclamation area based grid-search and random forest classifier[J]. Transactions of the Chinese Society for Agricultural Engineering, 2017,33(14): 250-257. [17] 刘海娟,张婷,侍昊,等.基于RF模型的高分辨率遥感影像分类评价[J].南京林业大学学报(自然科学版),2015,39(1):99-103. DOI:10.3969/j.issn.1000-2006.2015.01.018. LIU H J, ZHANG T, SHI H, et al. Classification evaluation on high resolution remote sensing image based on RF[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2015, 39(1):99-103. [18] 王奕森,夏树涛.集成学习之随机森林算法综述[J].信息通信技术,2018,12(1):49-55. WANG Y S, XIA S T. A survey of random forests algorithms[J]. Information and Communications Technologies,2018,12(1):49-55. [19] GOLDSTEIN B A, POLLEY E C, BRIGGS F B. Random forests for genetic association studies[J]. Stat Appl Genet Mol Biol, 2011, 10(1):32. DOI:10.2202/1544-6115.1691. [20] 姚登举,杨静,詹晓娟.基于随机森林的特征选择算法[J].吉林大学学报(工学版),2014,44(1):137-141. DOI:10.13229/j.cnki.jdxbgxb201401024. YAO D J, YANG J, ZHAN X J. Feature selection algorithm based on random forest[J]. Journal of Jilin University(Engineering and Technology Edition),2014,44(1):137-141. [21] 孙杰,赖祖龙.利用随机森林的城区机载LiDAR数据特征选择与分类[J].武汉大学学报(信息科学版),2014,39(11):1310-1313. DOI:10.13203/j.whugis20130206. SUN J, LAI Z L. Airborne LiDAR feature selection for urban classification using random forests [J]. Geomatics and Information Science of Wuhan University,2014, 39(11):1310-1313. [22] 黄衍,查伟雄.随机森林与支持向量机分类性能比较[J].软件,2012,33(6):107-110. DOI:10.3969/j.issn.1003-6970.2012.06.038. HUANG Y, ZHA W X. Comparison on classification performance between random forests and support vector machine[J]. Software, 2012,33(6):107-110. |