[1] |
萨如拉, 周庆, 刘鑫晔, 等. 1980—2015年内蒙古森林火灾的时空动态[J]. 南京林业大学学报(自然科学版), 2019,43(2):137-143.
|
|
SA R L, ZHOU Q, LIU X Y, et al. Studies on the spatial and temporal dynamics of forest fires in Inner Mongolia from 1980 to 2015[J]. J Nanjing For Univ (Nat Sci Ed), 2019,43(2):137-143.DOI: 10.3969/j.issn.1000-2006.201806037.
|
[2] |
杨存建, 冯凉, 杨洪忠, 等. 四川省林草火险等级评价[J]. 地理研究, 2010,29(6):980-988.
|
|
YANG C J, FENG L, YANG H Z, et al. Study of evaluation of forest and grass fire risk grade in Sichuan Province[J]. Geogr Res, 2010,29(6):980-988.
|
[3] |
TIAN X R, ZHAO F J, SHU L F, et al. Changes in forest fire danger for south-westhern China in the 21st century[J]. International Journal of Wildland Fire, 2014, 23(2):185-195. DOI: 10.1071/wf13014.
doi: 10.1071/WF13014
|
[4] |
冯治学, 陆愈实, 孙艺博, 等. 云南电网山火灾害风险评估[J]. 自然灾害学报, 2014,23(5):219-224.
|
|
FENG Z X, LU Y S, SUN Y B, et al. Assessment of power grid risk caused by wildfire disaster in Yunnan Province[J]. J Nat Disasters, 2014,23(5):219-224.DOI: 10.13577/j.jnd.2014.0528.
|
[5] |
王秋华, 舒立福, 李世友. 云南主要针叶林可燃物类型划分及特征[J]. 林业资源管理, 2011(2):48-53.
|
|
WANG Q H, SHU L F, LI S Y. Fuel types and characteristics in main coniferous forest in Yunnan Province[J]. For Resour Manag, 2011(2):48-53.DOI: 10.3969/j.issn.1002-6622.2011.02.010.
|
[6] |
王秋华, 舒立福, 李世友. 云南松林燃烧过程中飞火的研究[J]. 中国安全生产科学技术, 2011,7(1):48-53.
|
|
WANG Q H, SHU L F, LI S Y. Study on spotting of Pinus yunnanensis forest during burning [J]. J Saf Sci Technol, 2011,7(1):48-53.DOI: 10.3969/j.issn.1673-193X.2011.01.010.
|
[7] |
王秋华, 徐盛基, 李世友, 等. 云南松林飞火形成的火环境研究[J]. 浙江农林大学学报, 2013,30(2):263-268.
|
|
WANG Q H, XU S J, LI S Y, et al. Fire environment of spot fires in a Pinus yunnanensis forest [J]. Journal of Zhejiang A&F University, 2013,30(2):263-268.
|
[8] |
田晓瑞, 赵凤君, 舒立福, 等. 西南林区卫星监测热点及森林火险天气指数分析[J]. 林业科学研究, 2010,23(4):523-529.
|
|
TIAN X R, ZHAO F J, SHU L F, et al. Hotspots from satellite monitoring and forest fire weather index analysis for southwest China[J]. Forest Research, 2010,23(4):523-529.
|
[9] |
田晓瑞, 舒立福, 赵凤君, 等. 未来情景下西南地区森林火险变化[J]. 林业科学, 2012,48(1):121-125.
|
|
TIAN X R, SHU L F, ZHAO F J, et al. Forest fire danger changes for southwest China under future scenarios[J]. Scientia Silvae Sinicae, 2012,48(1):121-125.
|
[10] |
CHEN F, NIU S K, TONG X J, et al. The impact of precipitation regimes on forest fires in Yunnan Province, southwest China[J]. The Scientific World Journal, 2014(2014):1-9. DOI: 10.1155/2014/326782.
|
[11] |
陈锋, 林向东, 牛树奎, 等. 气候变化对云南省森林火灾的影响[J]. 北京林业大学学报, 2012,34(6):7-15.
|
|
CHEN F, LIN X D, NIU S K, et al. Influence of climate change on forest fire in Yunnan Province,southwestern China[J]. J Beijing For Univ, 2012,34(6):7-15.DOI: 10.13332/j.1000-1522.2012.06.010.
|
[12] |
YEBRA M, DENNISON P E, CHUVIECO E, et al. A global review of remote sensing of live fuel moisture content for fire danger assessment:Moving towards operational products[J]. Remote Sens Environ, 2013, 136:455-468.DOI: 10.1016/j.rse.2013.05.029.
doi: 10.1016/j.rse.2013.05.029
|
[13] |
ZHANG H J, HAN X Y, DAI S. Fire occurrence probability mapping of northeast China with binary logistic regression model[J]. IEEE J Sel Top Appl Earth Observations Remote Sensing, 2013, 6(1):121-127.DOI: 10.1109/jstars.2012.2236680.
doi: 10.1109/JSTARS.4609443
|
[14] |
ZHANG H J, QI P C, GUO G M. Improvement of fire danger modelling with geographically weighted Logistic model[J]. Int J Wildland Fire, 2014, 23(8):1130.DOI: 10.1071/wf13195.
doi: 10.1071/WF13195
|
[15] |
王周, 金万洲. 基于地理加权泊松模型的河南省火灾风险模拟[J]. 南京林业大学学报(自然科学版), 2015,39(5):93-98.
|
|
WANG Z, JIN W Z. Fire danger modeling with geographically weighted Poisson model in Henan Province[J]. J Nanjing For Univ (Nat Sci Ed), 2015,39(5):93-98.DOI: 10.3969/j.issn.1000-2006.2015.05.015.
|
[16] |
RIZOPOULOS D, MAX K H, KJELL J. Applied predictive modeling[J]. Biometrics, 2018, 74(1):383.DOI: 10.1111/biom.12855.
|
[17] |
张海军. 河南省火灾影响因素的空间分析[J]. 地理科学进展, 2014,33(7):958-968.
doi: 10.11820/dlkxjz.2014.07.011
|
|
ZHANG H J. Spatial analysis of fire-influencing factors in Henan Province[J]. Prog Geogr, 2014,33(7):958-968.DOI: 10.11820/dlkxjz.2014.07.011.
|
[18] |
WU W, ZHANG L J. Comparison of spatial and non-spatial logistic regression models for modeling the occurrence of cloud cover in north-eastern Puer to Rico[J]. Appl Geogr, 2013, 37:52-62.DOI: 10.1016/j.apgeog.2012.10.012.
doi: 10.1016/j.apgeog.2012.10.012
|
[19] |
MARTÍNEZ-FERNÁNDEZ J, CHUVIECO E, KOUTSIAS N. Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression[J]. Nat Hazards Earth Syst Sci, 2013, 13(2):311-327.DOI: 10.5194/nhess-13-311-2013.
doi: 10.5194/nhess-13-311-2013
|
[20] |
RODRIGUES M, DE LA RIVA J, FOTHERINGHAM S. Modeling the spatial variation of the explanatory factors of human: caused wildfires in Spain using geographically weighted logistic regression[J]. Appl Geogr, 2014, 48:52-63.DOI: 10.1016/j.apgeog.2014.01.011.
doi: 10.1016/j.apgeog.2014.01.011
|
[21] |
FEUILLET T, COQUIN J, MERCIER D, et al. Focusing on the spatial non-stationarity of landslide predisposing factors in northern Iceland[J]. Prog Phys Geogr:Earth Environ, 2014, 38(3):354-377.DOI: 10.1177/0309133314528944.
|
[22] |
ROY D P, BOSCHETTI L, JUSTICE C O, et al. The collection 5 MODIS burned area product:global evaluation by comparison with the MODIS active fire product[J]. Remote Sens Environ, 2008, 112(9):3690-3707.DOI: 10.1016/j.rse.2008.05.013.
doi: 10.1016/j.rse.2008.05.013
|
[23] |
BISQUERT M, SÁNCHEZ J, CASELLES V. Modeling fire danger in Galicia and Asturias (Spain) from MODIS images[J]. Remote Sens, 2014, 6(1):540-554.DOI: 10.3390/rs6010540.
doi: 10.3390/rs6010540
|
[24] |
范阔, 谢士琴, 陈玥璐, 等. 河北省围场县森林火险区划研究[J]. 西北林学院学报, 2018,33(4):162-166.
|
|
FAN K, XIE S Q, CHEN Y L, et al. Forest fire risk zone mapping in Weichang County of Hebei Province[J]. J Northwest For Univ, 2018,33(4):162-166.DOI: 10.3969/j.issn.1001-7461.2018.04.27.
|
[25] |
WANG L T, ZHOU Y, ZHOU W Q, et al. Fire danger assessment with remote sensing:a case study in northern China[J]. Nat Hazards, 2013, 65(1):819-834.DOI: 10.1007/s11069-012-0391-2.
doi: 10.1007/s11069-012-0391-2
|
[26] |
CECCATO P, GOBRON N, FLASSE S, et al. Designing a spectral index to estimate vegetation water content from remote sensing data:part 1[J]. Remote Sens Environ, 2002, 82(2/3):188-197.DOI: 10.1016/s0034-4257(02)00037-8.
doi: 10.1016/S0034-4257(02)00037-8
|
[27] |
WHEELER D C. Diagnostic tools and a remedial method for collinearity in geographically weighted regression[J]. Environ Plan A, 2007, 39(10):2464-2481.DOI: 10.1068/a38325.
doi: 10.1068/a38325
|
[28] |
WHEELER D, TIEFELSDORF M. Multicollinearity and correlation among local regression coefficients in geographically weighted regression[J]. J Geograph Syst, 2005, 7(2):161-187.DOI: 10.1007/s10109-005-0155-6.
doi: 10.1007/s10109-005-0155-6
|
[29] |
KREBS P, KOUTSIAS N, CONEDERA M. Modelling the eco-cultural niche of giant chestnut trees:new insights into land use history in southern Switzerland through distribution analysis of a living heritage[J]. J Hist Geogr, 2012, 38(4):372-386.DOI: 10.1016/j.jhg.2012.01.018.
doi: 10.1016/j.jhg.2012.01.018
|
[30] |
KAREGOWDA A G, JAYARAM M A, MANJUNATH A S. Combining Akaike’s information criterion (AIC) and the golden-section search technique to find optimal numbers of K-nearest neighbors[J]. Int J Comput Appl, 2010, 2(1):80-87.DOI: 10.5120/609-859.
|
[31] |
HURVICH C M, SIMONOFF J S, TSAI C L. Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion[J]. J Royal Stat Soc:Ser B Stat Methodol, 1998, 60(2):271-293.DOI: 10.1111/1467-9868.00125.
|
[32] |
PILZ J, SPÖCK G. Why do we need and how should we implement Bayesian Kriging methods[J]. Stoch Environ Res Risk Assess, 2008, 22(5):621-632.DOI: 10.1007/s00477-007-0165-7.
doi: 10.1007/s00477-007-0165-7
|
[33] |
DORMANN C F, MCPHERSON J M, ARAÚJO M B, et al. Methods to account for spatial autocorrelation in the analysis of species distributional data:a review[J]. Ecography, 2007, 30(5):609-628.DOI: 10.1111/j.2007.0906-7590.05171.x.
doi: 10.1111/j.2007.0906-7590.05171.x
|
[34] |
PEARCE J, FERRIER S. Evaluating the predictive performance of habitat models developed using logistic regression[J]. Ecol Model, 2000, 133(3):225-245.DOI: 10.1016/s0304-3800(00)00322-7.
doi: 10.1016/S0304-3800(00)00322-7
|
[35] |
LE REST K, PINAUD D, BRETAGNOLLE V. Accounting for spatial autocorrelation from model selection to statistical inference:application to a national survey of a diurnal raptor[J]. Ecol Informatics, 2013, 14:17-24.DOI: 10.1016/j.ecoinf.2012.11.008.
doi: 10.1016/j.ecoinf.2012.11.008
|
[36] |
CROMLEY R G, HANINK D M. Visualizing robust geographically weighted parameter estimates[J]. Cartogr Geogr Inf Sci, 2014, 41(1):100-110.DOI: 10.1080/15230406.2013.831205.
doi: 10.1080/15230406.2013.831205
|
[37] |
KOUTSIAS N, MARTÍNEZ-FERNÁNDEZ J, ALLGÖWER B. Do factors causing wildfires vary in space?evidence from geographically weighted regression[J]. Giscience Remote Sens, 2010, 47(2):221-240.DOI: 10.2747/1548-1603.47.2.221.
doi: 10.2747/1548-1603.47.2.221
|
[38] |
GUO L, MA Z H, ZHANG L J. Comparison of bandwidth selection in application of geographically weighted regression:a case study[J]. Can J For Res, 2008, 38(9):2526-2534.DOI: 10.1139/x08-091.
|