
云南省林草火险空间模拟和等级评价
Spatial modeling and grade evaluation of forest and grass fire danger in Yunnan Province
【目的】森林火险空间模拟和等级评价对森林防火具有重要意义。为确定不同区域林草资源防火的重点因素,对云南省的林草火险进行空间模拟和等级评价。【方法】采用2001—2014年的MODIS数据,选取反映植被状态、温度、地形和人类活动可达性等4个方面的火环境因素,通过设计抽样方案、训练集和检验集生成程序,得到35个数据集,开发70个地理加权Logistic回归模型,以交叉验证法评估模型性能,最终选择残差空间随机、可靠性和区分能力最优的模型做统计推断。将模拟的每期过火概率图重分为5类,相应火险类别分别记为“低”、“中”、“高”、“很高”、“极高”等级。【结果】火险类别中,“极高”等级占12.7%,“很高”等级占18.1%,二者可解释2001—2014年云南省80%的林草火灾,文山、红河、玉溪、楚雄、丽江、大理等6市的“极高”和“很高”等级面积占全省面积的71.5%,是全省的“重灾区”。【结论】“重灾区”应列为云南林草防火的重点区域,在防火的人、财、物上给予优先考虑。高温是云南省首要火险因素,其次为海拔、坡度、枯死植被、植被量,人类活动可达性影响相对较弱。影响火险的火环境因素在云南省内仅部分区域显著,按显著区及相对权重,云南省可分为西北、西南、西中Ⅰ、西中Ⅱ、东南和中部共6个区域,不同区域应因地制宜确定防火重点并布置防火资源。
【Objective】Spatial modeling and grade evaluation of forest and grass fire dangers are great significance in fire prevention. In this study, a framework of spatial non-stationarity was introduced to carry out fire danger modeling in Yunnan Province. 【Method】 Data from the Moderate Resolution Imaging Spectroradiometer(MODIS), four fire-influencing factors (vegetation status, temperature, topography, and accessibility), and geographically weighted Logistic regression (GWLR) were employed to model and evaluate the forest and grass fire danger. After checking the spatio-temporal distribution of fires during 2001 and 2014, an equal number of unburned and burned points from December to April were sampled according to the designed procedure. The sampled data were divided into seven groups (one group for two years); of these, four were selected to develop the GWLR model (i.e., training and inner validation subset) and three were used to validate the developed model (i.e., independent testing subset), which created thirty five datasets. After excluding potential multicollinearity among the independent variables, the 35 adaptive Gaussian GWLR models and 35 adaptive bi-square GWLR models were developed. Cross validation was utilized to evaluate the performance of the developed GWLR models. Statistical inference was carried out based on the optimal model. 【Result】 We concluded that attention should be paid to overfitting and spatial autocorrelation of residuals in the application of GWLR to fire danger studies as they may hamper fire prevention operations. The “extreme high” danger zone accounted for 12.7%, “very high” for 18.1%, and “high” for 19.0% of the forest and grass fires in Yunnan Province from 2001 to 2014. Together, the “extreme high” and “very high” zones accounted for 80% of these fires and could be labeled as the “key area” in the danger zone. We suggest that the locations of Wenshan, Honghe, Yuxi, Chuxiong, Lijiang, and Dali, which together account for 71.5% of the “key area,” should be recognized as the most fire-prone areas and must be given priority in receiving labor, funds, and goods for forest and grass fire prevention. High temperature was an all-important forest and grass fire-influencing factor in Yunnan Province, followed by altitude, slope, dead vegetation, and fraction of green vegetation. The accessibility of roads and villages also plays a role in controlling the spread of fire. The influence of environmental factors on the presence of fire presented significant spatial variability in this study; however, these factors are unique to the Yunnan Province. 【Conclusion】 According to the significant areas of fire-influencing factors and their relative weights, Yunnan Province can be divided into six fire prevention regions and requires the formulation of different fire prevention policies for each region.
林草火险 / 地理加权Logistic回归(GWLR) / 残差空间自相关 / 交叉验证 / 云南省
forest and grass fire danger / geographically weighted Logistic regression (GWLR) / spatial autocorrelation of residuals / cross validation / Yunnan Province
[1] |
萨如拉, 周庆, 刘鑫晔, 等. 1980—2015年内蒙古森林火灾的时空动态[J]. 南京林业大学学报(自然科学版), 2019,43(2):137-143.
|
[2] |
杨存建, 冯凉, 杨洪忠, 等. 四川省林草火险等级评价[J]. 地理研究, 2010,29(6):980-988.
|
[3] |
|
[4] |
冯治学, 陆愈实, 孙艺博, 等. 云南电网山火灾害风险评估[J]. 自然灾害学报, 2014,23(5):219-224.
|
[5] |
王秋华, 舒立福, 李世友. 云南主要针叶林可燃物类型划分及特征[J]. 林业资源管理, 2011(2):48-53.
|
[6] |
王秋华, 舒立福, 李世友. 云南松林燃烧过程中飞火的研究[J]. 中国安全生产科学技术, 2011,7(1):48-53.
|
[7] |
王秋华, 徐盛基, 李世友, 等. 云南松林飞火形成的火环境研究[J]. 浙江农林大学学报, 2013,30(2):263-268.
|
[8] |
田晓瑞, 赵凤君, 舒立福, 等. 西南林区卫星监测热点及森林火险天气指数分析[J]. 林业科学研究, 2010,23(4):523-529.
|
[9] |
田晓瑞, 舒立福, 赵凤君, 等. 未来情景下西南地区森林火险变化[J]. 林业科学, 2012,48(1):121-125.
|
[10] |
|
[11] |
陈锋, 林向东, 牛树奎, 等. 气候变化对云南省森林火灾的影响[J]. 北京林业大学学报, 2012,34(6):7-15.
|
[12] |
|
[13] |
|
[14] |
|
[15] |
王周, 金万洲. 基于地理加权泊松模型的河南省火灾风险模拟[J]. 南京林业大学学报(自然科学版), 2015,39(5):93-98.
|
[16] |
|
[17] |
张海军. 河南省火灾影响因素的空间分析[J]. 地理科学进展, 2014,33(7):958-968.
科学揭示火灾及其影响因素间的空间关系可为防火管理提供决策支持和有益启示。以往研究多在“空间平稳”的框架下进行火灾影响因素分析,但火灾和其可量化的影响因素往往自身均表现为“空间异质”,基于非空间的全局模型模拟可能会得出误导性甚至错误的结论。地理加权回归(GWR)可解释火灾及其影响因素间空间关系的局部变异。本文选取影响火灾分布的高程、坡度、居民地可达性、道路可达性、地表温度、归一化差植被指数和全球植被湿度指数作为解释变量,以是否火烧作为二元因变量,应用logistic GWR对河南省2002-2012年火季(9-10月)火灾的影响因素进行探索性分析。以多时态空间抽样取得训练样本,利用GWR 4.0软件开发一个logistic GWR火烧概率模型,从可靠性和区分能力两方面对模型性能分别进行内部检验和独立检验,以确保火灾影响因素分析的可靠和合理性。结果表明:①坡度、居民地可达性、温度、植被长势和植被湿度对河南省火灾的影响呈现显著空间变化,高程、道路可达性的影响空间变化不显著,低海拔、道路可达性差的区域更易发生火灾。②温度和植被长势对火灾影响省内全局显著,坡度、居民地可达性和植被湿度对火灾影响在省内仅部分区域显著。③河南省可划分为7种类型区,不同类型区的火灾影响因素相对重要性存在差异,应因地制宜制定防火策略和确定防火重点。④logistic GWR模型可用于分析火灾影响因素的局部空间变异,作为火险研究的一种有效工具。
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
范阔, 谢士琴, 陈玥璐, 等. 河北省围场县森林火险区划研究[J]. 西北林学院学报, 2018,33(4):162-166.
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
/
〈 |
|
〉 |