南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (5): 141-148.doi: 10.3969/j.issn.1000-2006.201808017
收稿日期:
2018-08-07
修回日期:
2019-03-27
出版日期:
2019-10-08
发布日期:
2019-10-08
基金资助:
Received:
2018-08-07
Revised:
2019-03-27
Online:
2019-10-08
Published:
2019-10-08
摘要:
细根在森林生态系统中具有重要的生物学和生态学地位。细根寿命取决于树种本身,也受控于环境条件。根际作为植物、土壤与微生物三者交互作用的区域,其中的微生态过程对细根寿命的调控具有决定意义。笔者基于当前国内外细根寿命调控的主要因素,分别从根际碳沉积与根际微生态过程、根系对根际微生物群落构建的影响、根际微生物对细根寿命调控的可能机制3个方面对根际微生物与根系的互作效应,及其对细根寿命调控机制的相关研究进展进行综述。在此基础上,提出了:①酚酸介导的植物-微生物化学对话机制是未来根土互作研究的重要领域;②根系与微生物互作主要以光合产物碳作为枢纽,根际碳沉积促进了土壤微生物在根际的定殖,进而导致根际的微生物群落在组成和结构上与非根际土壤的呈现显著差异;③根土互作过程中由根系和根际微生物产生的信号物质可能对根系的生长发育产生显著影响;④作为细菌的主要群感信号分子,酰化高丝氨酸内脂(AHLs)可参与调控根系细胞的凋亡;真菌侵染根系后也可能导致根内活性氧(ROS)累积,进而调控根系细胞凋亡。目前未见根际微生物参与根系寿命调控的研究报道。建议进一步构建细菌群落演变-群感信号表达-细根寿命关系模型,以及真菌侵染-活性氧信号内稳态调控-细根寿命关系模型,这些对深入揭示林木细根衰老和凋亡的微生态调控机制具有重要理论意义。
中图分类号:
王延平. 林木根际微生态过程与细根寿命调控机制研究进展[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 141-148.
WANG Yanping. Review on micro-ecological processes in rhizosphere soils of trees and the modulation mechanisms of fine roots lifespan[J].Journal of Nanjing Forestry University (Natural Science Edition), 2019, 43(5): 141-148.DOI: 10.3969/j.issn.1000-2006.201808017.
[1] |
HENDRICKS J J, NADELHOFFER K J, ABER J D. Assessing the role of fine roots in carbon and nutrient cycling[J]. Trends in Ecology & Evolution, 1993, 8(5):174-178. DOI: 10.1016/0169-5347(93)90143-d.
doi: 10.1016/0169-5347(93)90143-D |
[2] | VOGT K A, GRIER C C, VOGT D J. Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests[G]//VOGT K A, GRIER C C, VOGT D J. Advances in Ecological Research. New York: Elsevier Academic Press, 1986: 303-377. |
[3] | BLOOMFIELD J, VOGT K A, WARGO P M. Tree root turnover and senescence[G]//WAISEL Y, ESHEL A, KAFKAFI U. Plant roots, the hidden half. 2nd ed. New York: Marcel Dekker Press, 1996:363-381. |
[4] | 张小全, 吴可红. 森林细根生产和周转研究[J]. 林业科学, 2001, 37(3):126-138.DOI: 10.3321/j.issn:1001-7488.2001.03.021. |
ZHANG X Q, WU K H. Fine-root production and turnover for forest ecosystems[J]. Scientia Silvae Sinicae, 2001, 37(3):126-138. | |
[5] |
GILL R A, JACKSON R B. Global patterns of root turnover for terrestrial ecosystems[J]. New Phytologist, 2000, 147(1):13-31. DOI: 10.1046/j.1469-8137.2000.00681.x.
doi: 10.1046/j.1469-8137.2000.00681.x |
[6] |
JACKSON R B, MOONEY H A, SCHULZE E D. A global budget for fine root biomass, surface area, and nutrient contents[J]. Proceedings of the National Academy of Sciences, 1997, 94(14):7362-7366. DOI: 10.1073/pnas.94.14.7362.
doi: 10.1073/pnas.94.14.7362 |
[7] |
POWERS J S, PERÉZ-AVILES D. Edaphic factors are a more important control on surface fine roots than stand age in secondary tropical dry forests[J]. Biotropica, 2013, 45(1):1-9. DOI: 10.1111/j.1744-7429.2012.00881.x.
doi: 10.1111/j.1744-7429.2012.00881.x |
[8] | PEEK M S. Explaining variation in fine root life span[G]// ESSER K. Progress in Botany. Berlin, Heidelberg: Springer-Verlag, 2007: 382-398. |
[9] |
WITHINGTON J M, REICH P B, OLEKSYN J, et al. Comparisons of structure and life span in roots and leaves among temperate trees[J]. Ecological Monographs, 2006, 76(3):381-397. DOI: 10.1890/0012-9615(2006)076[0381:cosals]2.0.co;2.
doi: 10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2 |
[10] |
WELLS C E, EISSENSTAT D M. Marked differences in survivorship among apple roots of different diameters[J]. Ecology, 2001, 82(3):882-892. DOI: 10.2307/2680206.
doi: 10.1890/0012-9658(2001)082[0882:MDISAA]2.0.CO;2 |
[11] |
PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine North American trees[J]. Ecological Monographs, 2002, 72(2):293-309. DOI: 10.2307/3100029.
doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2 |
[12] |
PREGITZER K S, KUBISKE M E, YU C K, et al. Relationships among root branch order, carbon, and nitrogen in four temperate species[J]. Oecologia, 1997, 111(3):302-308. DOI: 10.1007/s004420050239.
doi: 10.1007/s004420050239 |
[13] |
MCCORMACK L M, ADAMS T S, SMITHWICK E A, et al. Predicting fine root lifespan from plant functional traits in temperate trees[J]. New Phytologist, 2012, 195(4):823-31. DOI: 10.1111/j.1469-8137.2012.04198.x.
doi: 10.1111/nph.2012.195.issue-4 |
[14] |
PREGITZER K S, KING J S, BURTON A J, et al. Responses of tree fine roots to temperature[J]. New Phytologist, 2000, 147(1):105-115. DOI: 10.1046/j.1469-8137.2000.00689.x
doi: 10.1046/j.1469-8137.2000.00689.x |
[15] |
NORBY R S, JACKSON R B. Root dynamics and global change: seeking an ecosystem perspective[J]. New Phytologist, 2000, 147(1):3-12. DOI: 10.1046/j.1469-8137.2000.00676.x.
doi: 10.1046/j.1469-8137.2000.00676.x |
[16] | MCCORMACK M L, GUO D L. Impacts of environmental factors on fine root lifespan[J]. Frontiers in Plant Science, 2014, 5(5):205. DOI: 10.3389/fpls.2014.00205. |
[17] |
SASSE J, MARTINOIA E, NORTHEN T. Feed your friends: do plant exudates shape the root microbiome?[J]. Trends in Plant Science, 2018, 23(1):25-41. DOI: 10.1016/j.tplants.2017.09.003.
doi: 10.1016/j.tplants.2017.09.003 |
[18] | MARSCHNER H. Mineral nutrition of higher plants[M]. New York: Elsevier Academic Press, 1995. |
[19] | EISSENSTAT D M. Trade-offs in root form and function[G]//JACKSON L E. Ecology in agriculture. New York: Elsevier Academic Press, 1997: 173-199. |
[20] |
FARRAR J, HAWES M, JONES D, et al. How roots control the flux of carbon to the rhizosphere[J]. Ecology, 2003, 84(4):827-837. DOI: 10.1890/0012-9658(2003)084[0827:hrctfo]2.0.co;2.
doi: 10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2 |
[21] |
JONES D L, NGUYEN C, FINLAY R D. Carbon flow in the rhizosphere: carbon trading at the soil-root interface[J]. Plant and Soil, 2009, 321(1/2):5-33. DOI: 10.1007/s11104-009-9925-0.
doi: 10.1007/s11104-009-9925-0 |
[22] |
VAN HEES P A W, GODBOLD D L, JENTSCHKE G, et al. Impact of ectomycorrhizas on the concentration and biodegradation of simple organic acids in a forest soil[J]. European Journal of Soil Science, 2003, 54(4):697-706. DOI: 10.1046/j.1351-0754.2003.0561.x.
doi: 10.1046/j.1351-0754.2003.0561.x |
[23] |
VAN HEES P A W, LUNDSTRÖM U S, MÖRTH C M. Dissolution of microcline and labradorite in a forest O horizon extract: the effect of naturally occurring organic acids[J]. Chemical Geology, 2002, 189(3/4):199-211. DOI: 10.1016/s0009-2541(02)00141-9.
doi: 10.1016/S0009-2541(02)00141-9 |
[24] |
HAICHAR F Z, SANTAELLA C, HEULIN T, et al. Root exudates mediated interactions belowground[J]. Soil Biology and Biochemistry, 2014, 77(7):69-80. DOI: 10.1016/j.soilbio.2014.06.017.
doi: 10.1016/j.soilbio.2014.06.017 |
[25] | BADRI D V, VIVANCO J M. Regulation and function of root exudates[J]. Plant, Cell & Environment, 2009, 32(6):666-681. DOI: 10.1111/j.1365-3040.2009.01926.x. |
[26] | PINTON R, VARANINI Z, NANNIPIERI P. The rhizosphere, biochemistry and organic substances at the soil-plant interface[M]. London: CRC Press, 2007. |
[27] |
GORDON W S, JACKSON R B. Nutrient concentrations in fine roots[J]. Ecology, 2000, 81(1):275-280. DOI: 10.2307/177151.
doi: 10.1890/0012-9658(2000)081[0275:NCIFR]2.0.CO;2 |
[28] |
PHILIPPOT L, RAAIJMAKERS J M, LEMANCEAU P, et al. Going back to the roots: the microbial ecology of the rhizosphere[J]. Nature Reviews Microbiology, 2013, 11(11):789-799. DOI: 10.1038/nrmicro3109.
doi: 10.1038/nrmicro3109 |
[29] |
BAETZ U, MARTINOIA E. Root exudates: the hidden part of plant defense[J]. Trends in Plant Science, 2014, 19(2):90-98. DOI: 10.1016/j.tplants.2013.11.006.
doi: 10.1016/j.tplants.2013.11.006 |
[30] |
SOKOL N W, KUEBBING S E, KARLSEN-AYALA E, et al. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon[J]. New Phytologist, 2019, 221(1):233-246. DOI: 10.1111/nph.15361.
doi: 10.1111/nph.15361 |
[31] |
HAICHAR F Z, MOROL C, BERGE O, et al. Plant host habitat and root exudates shape soil bacterial community structure[J]. The ISME Journal, 2008, 2(12):1221-1230. DOI: 10.1038/ismej.2008.80.
doi: 10.1038/ismej.2008.80 |
[32] |
KUZYAKOV Y. Priming effects: interactions between living and dead organic matter[J]. Soil Biology and Biochemistry, 2010, 42(9):1363-1371. DOI: 10.1016/j.soilbio.2010.04.003.
doi: 10.1016/j.soilbio.2010.04.003 |
[33] | 张宝贵, 李贵桐. 土壤生物在土壤磷有效化中的作用[J]. 土壤学报, 1998, 35(1):104-111. DOI: 10.11766/trxb199508270115. |
ZHANG B G, LI G T. Roles of soil organisms on the enhancement of plant availability of soil phosphorus[J]. Acta Pedologica Sinica, 1998, 35(1):104-111. | |
[34] |
YEHUDA Z, SHENKER M, HADAR Y, et al. Remedy of chlorosis induced by iron deficiency in plants with the fungal siderophore rhizoferrin[J]. Journal of Plant Nutrition, 2000, 23(11/12):1991-2006. DOI: 10.1080/01904160009382160.
doi: 10.1080/01904160009382160 |
[35] | ROBERTSON G P, GROFFMAN P M. Nitrogen transformation [G]//PAUL E A. Soil microbiology, ecology and biochemistry. Burlington: Elsevier Academic Press, 2007: 341-364. |
[36] |
YANG J, KLOEPPER J W, RYU C M. Rhizosphere bacteria help plants tolerate abiotic stress[J]. Trends in Plant Science, 2009, 14(1):1-4. DOI: 10.1016/j.tplants.2008.10.004.
doi: 10.1016/j.tplants.2008.10.004 |
[37] | AGRIOS G N. Plant pathology[M]. 5th ed. New York: Elsevier Academic Press, 2005. |
[38] |
OGER P M, MANSOURI H, NESME X, et al. Engineering root exudation of lotus toward the production of two novel carbon compounds leads to the selection of distinct microbial populations in the rhizosphere[J]. Microbial Ecology, 2004, 47(1):96-103. DOI: 10.1007/s00248-003-2012-9.
doi: 10.1007/s00248-003-2012-9 |
[39] |
FREY-KLETT P, CHAVATTE M, CLAUSSE M L, et al. Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads[J]. New Phytologist, 2004, 165(1):317-328. DOI: 10.1111/j.1469-8137.2004.01212.x.
doi: 10.1111/nph.2005.165.issue-1 |
[40] | 安韶山, 李国辉, 陈利顶. 宁南山区典型植物根际与非根际土壤微生物功能多样性[J]. 生态学报, 2011, 31(18):5225-5234. |
AN S S, LI G H, CHEN L D. Soil microbial functional diversity between rhizosphere and non-rhizosphere of typical plants in the hilly area of southern Nixia[J]. Acta Ecologica Sinica, 2011, 31(18):5225-5234. | |
[41] | 邱权, 李吉跃, 王军辉, 等. 西宁南山4种灌木根际和非根际土壤微生物、酶活性和养分特征[J]. 生态学报, 2014, 34(24):7411-7420. DOI: 10.5846/stxb201303180448. |
QIU Q, LI J Y, WANG J H, et al. Microbes, enzyme activities and nutrient characteristics of rhizosphere and non-rhizosphere soils under four shrubs in Xining Nanshan, prefecture, China[J]. Acta Ecologica Sinica, 2014, 34(24):7411-7420. | |
[42] |
UROZ S, OGER P, MORIN E, et al. Distinct ectomycorrhizospheres share similar bacterial communities as revealed by pyrosequencing-based analysis of 16S rRNA genes[J]. Applied and Environmental Microbiology, 2012, 78(8):3020-3024. DOI: 10.1128/aem.06742-11.
doi: 10.1128/AEM.06742-11 |
[43] |
JONES D L, HODGE A, KUZYAKOV Y. Plant and mycorrhizal regulation of rhizodeposition[J]. New Phytologist, 2004, 163(3):459-480. DOI: 10.1111/j.1469-8137.2004.01130.x.
doi: 10.1111/nph.2004.163.issue-3 |
[44] |
RYAN R P, GERMAINE K, FRANKS A, et al. Bacterial endophytes: recent developments and applications[J]. FEMS Microbiology Letters, 2008, 278(1):1-9. DOI: 10.1111/j.1574-6968.2007.00918.x.
doi: 10.1111/fml.2008.278.issue-1 |
[45] |
LUGTENBERG B, KAMILOVA F. Plant-growth-promoting rhizobacteria[J]. Annual Review of Microbiology, 2009, 63(1):541-556. DOI: 10.1146/annurev.micro.62.081307.162918.
doi: 10.1146/annurev.micro.62.081307.162918 |
[46] |
ZHALNINA K, LOUIE K B, HAO Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology, 2018, 3(4):470-480. DOI: 10.1038/s41564-018-0129-3.
doi: 10.1038/s41564-018-0129-3 |
[47] |
BOUDET A M. Evolution and current status of research in phenolic compounds[J]. Phytochemistry, 2007, 68(22/23/24):2722-2735. DOI: 10.1016/j.phytochem.2007.06.012.
doi: 10.1016/j.phytochem.2007.06.012 |
[48] |
DEASCENSAO A R F D C, DUBERY I A. Soluble and wall-bound phenolics and phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f. sp. cubense[J]. Phytochemistry, 2003, 63(6):679-686. DOI: 10.1016/s0031-9422(03)00286-3.
doi: 10.1016/S0031-9422(03)00286-3 |
[49] | FERREYRA M L F, RIUS S P, CASATI P. Flavonoids: biosynjournal, biological functions, and biotechnological applications[J]. Frontiers in Plant Science, 2012, 3:1-15. DOI: 10.3389/fpls.2012.00222. |
[50] | ZENG R S, MALLIK A U, LUO S M. Allelopathy in sustainable agriculture and forestry[M]. New York: Spring Press, 2008. |
[51] |
INDERJIT, MALLIK A U. Effect of phenolic compounds on selected soil properties[J]. Forest Ecology and Management, 1997, 92(1/2/3):11-18. DOI: 10.1016/s0378-1127(96)03957-6.
doi: 10.1016/S0378-1127(96)03957-6 |
[52] |
MARTENS D A. Relationship between plant phenolic acids released during soil mineralization and aggregate stabilization[J]. Soil Science Society of America Journal, 2002, 66(6):1857-1867. DOI: 10.2136/sssaj2002.1857.
doi: 10.2136/sssaj2002.1857 |
[53] |
LI Z H, WANG Q, RUAN X, et al. Phenolics and plant allelopathy[J]. Molecules, 2010, 15(12):8933-8952. DOI: 10.3390/molecules15128933.
doi: 10.3390/molecules15128933 |
[54] | MANDAL S M, CHAKRABORTY D, DEY S. Phenolic acids act as signaling molecules in plant-microbe symbioses[J]. Plant Signaling & Behavior, 2010, 5(4):359-368. DOI: 10.4161/psb.5.4.10871. |
[55] |
BLUM U, STAMAN K L, FLINT L J, et al. Induction and/or selection of phenolic acid-utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid phytotoxicity[J]. Journal of Chemical Ecology, 2000, 26(9):2059-2078. DOI: 10.1023/A:1005560214222.
doi: 10.1023/A:1005560214222 |
[56] |
CHAKRABORTY D, MANDAL S M. Fractional changes in phenolic acids composition in root nodules of Arachis hypogaea L.[J]. Plant Growth Regulation, 2008, 55(3):159-163. DOI: 10.1007/s10725-008-9275-6.
doi: 10.1007/s10725-008-9275-6 |
[57] |
BAIS H P, WEIR T L, PERRY L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57(1):233-266. DOI: 10.1146/annurev.arplant.57.032905.105159.
doi: 10.1146/annurev.arplant.57.032905.105159 |
[58] |
DOORNBOS R F, VAN LOON L C, BAKKER P A H M. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere: a review[J]. Agronomy for Sustainable Development, 2012, 32(1):227-243. DOI: 10.1007/s13593-011-0028-y.
doi: 10.1007/s13593-011-0028-y |
[59] |
BADRI D V, CHAPARRO J M, ZHANG R F, et al. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome[J]. Journal of Biological Chemistry, 2013, 288(7):4502-4512. DOI: 10.1074/jbc.m112.433300.
doi: 10.1074/jbc.M112.433300 |
[60] |
BADRI D V, WEIR T L, VAN DER LELIE D, et al. Rhizosphere chemical dialogues: plant-microbe interactions[J]. Current Opinion in Biotechnology, 2009, 20(6):642-650. DOI: 10.1016/j.copbio.2009.09.014.
doi: 10.1016/j.copbio.2009.09.014 |
[61] |
WANG Y P, LI C R, WANG Q K, et al. Environmental behaviors of phenolic acids dominated their rhizodeposition in boreal poplar plantation forest soils[J]. Journal of Soils and Sediments, 2016, 16(7):1858-1870. DOI: 10.1007/s11368-016-1375-8.
doi: 10.1007/s11368-016-1375-8 |
[62] |
GUO D L, XIA M X, WEI X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species[J]. New Phytologist, 2008, 180(3):673-683. DOI: 10.1111/j.1469-8137.2008.02573.x.
doi: 10.1111/nph.2008.180.issue-3 |
[63] |
KONG D L, MA C G, ZHANG Q, et al. Leading dimensions in absorptive root trait variation across 96 subtropical forest species[J]. New Phytologist, 2014, 203(3):863-872. DOI: 10.1111/nph.12842.
doi: 10.1111/nph.2014.203.issue-3 |
[64] |
KING J S, ALBAUGH T J, ALLEN H L, et al. Belowground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine[J]. New Phytologist, 2002, 154(2):389-398. DOI: 10.1046/j.1469-8137.2002.00393.x.
doi: 10.1046/j.1469-8137.2002.00393.x |
[65] |
HOOKER J E, BLACK K E, PERRY R L, et al. Arbuscular mycorrhizal fungi induced alteration to root longevity of poplar[J]. Plant and Soil, 1995, 172(2):327-329. DOI: 10.1007/bf00011335.
doi: 10.1007/BF00011335 |
[66] | BERG G, GRUBE M, SCHLOTER M, et al. Unraveling the plant microbiome: looking back and future perspectives[J]. Frontiers in Microbiology, 2014, 5:148. DOI: 10.3389/fmicb.2014.00148. |
[67] |
GREGORY P J. Roots, rhizosphere and soil: the route to a better understanding of soil science?[J]. European Journal of Soil Science, 2006, 57(1):2-12. DOI: 10.1111/j.1365-2389.2005.00778.x.
doi: 10.1111/ejs.2006.57.issue-1 |
[68] |
UROZ S, BUÉE M, MURAT C, et al. Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil[J]. Environmental Microbiology Reports, 2010, 2(2):281-288. DOI: 10.1111/j.1758-2229.2009.00117.x.
doi: 10.1111/emi4.2010.2.issue-2 |
[69] |
HENSE B A, KUTTLER C, MÜLLER J, et al. Does efficiency sensing unify diffusion and quorum sensing?[J]. Nature Reviews Microbiology, 2007, 5(3):230-239. DOI: 10.1038/nrmicro1600.
doi: 10.1038/nrmicro1600 |
[70] |
BAUER W D, MATHESIUS U. Plant responses to bacterial quorum sensing signals[J]. Current Opinion in Plant Biology, 2004, 7(4):429-433. DOI: 10.1016/j.pbi.2004.05.008.
doi: 10.1016/j.pbi.2004.05.008 |
[71] | HARTMANN A, ROTHBALLER M, HENSE B A, et al. Bacterial quorum sensing compounds are important modulators of microbe-plant interactions[J]. Frontiers in Plant Science, 2014, 5:131. DOI: 10.3389/fpls.2014.00131. |
[72] |
VON BODMAN S B, BAUER W D, COPLIN D L. Quorumsensing inplant-pathogenic bacteria[J]. Annual Review of Phytopathology, 2003, 41(1):455-482. DOI: 10.1146/annurev.phyto.41.052002.095652.
doi: 10.1146/annurev.phyto.41.052002.095652 |
[73] |
WHITELEY M, DIGGLE S P, GREENBERG E P. Progress in and promise of bacterial quorum sensing research[J]. Nature, 2017, 551(7680):313-320. DOI: 10.1038/nature24624.
doi: 10.1038/nature24624 |
[74] |
SCOTT R A, WEIL J, LE P T, et al. Long-and short-chain plant-produced bacterial N-acyl-homoserine lactones become components of phyllosphere, rhizosphere, and soil[J]. Molecular Plant-Microbe Interactions, 2006, 19(3):227-239. DOI: 10.1094/mpmi-19-0227.
doi: 10.1094/MPMI-19-0227 |
[75] |
VON RAD U, KLEIN I, DOBREV P I, et al. Response of Arabidopsis thaliana to N-hexanoyl-dl-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere[J]. Planta, 2008, 229(1):73-85. DOI: 10.1007/s00425-008-0811-4.
doi: 10.1007/s00425-008-0811-4 |
[76] |
LIU F, BIAN Z, JIA Z H, et al. The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum-sensing signals[J]. Molecular Plant-Microbe Interactions, 2012, 25(5):677-683. DOI: 10.1094/mpmi-10-11-0274.
doi: 10.1094/MPMI-10-11-0274 |
[77] |
JIN G P, LIU F, MA H, et al. Two G-protein-coupled-receptor candidates, Cand 2 and Cand 7, are involved in Arabidopsis root growth mediated by the bacterial quorum-sensing signals N-acyl-homoserine lactones[J]. Biochemical and Biophysical Research Communications, 2012, 417(3):991-995. DOI: 10.1016/j.bbrc.2011.12.066.
doi: 10.1016/j.bbrc.2011.12.066 |
[78] |
SCHIKORA A, SCHENK S T, STEIN E, et al. N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6[J]. Plant Physiology, 2011, 157(3):1407-1418. DOI: 10.1104/pp.111.180604.
doi: 10.1104/pp.111.180604 |
[79] | SCHENK S T, STEIN E, KOGEL K H, et al. Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules[J]. Plant Signaling & Behavior, 2012, 7(2):178-181. DOI: 10.4161/psb.18789. |
[80] |
TATEDA K, ISHII Y, HORIKAWA M, et al. The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils[J]. Infection and Immunity, 2003, 71(10):5785-5793. DOI: 10.1128/iai.71.10.5785-5793.2003.
doi: 10.1128/IAI.71.10.5785-5793.2003 |
[81] | DÍAZ-TIELAS C, GRAÑA E, SOTELO T, et al. The natural compound trans-chalcone induces programmed cell death in Arabidopsis thaliana roots[J]. Plant, Cell & Environment, 2012, 35(8):1500-1517. DOI: 10.1111/j.1365-3040.2012.02506.x. |
[82] |
MATHESIUS U, MULDERS S, GAO M, et al. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals[J]. Proceedings of the National Academy of Sciences, 2003, 100(3):1444-1449. DOI: 10.1073/pnas.262672599.
doi: 10.1073/pnas.262672599 |
[83] | SMITH S E, READ D J. Mycorrhizal symbiosis[M]. 3rd ed. New York: Elsevier Academic Press, 2008. |
[84] |
DRIGO B, PIJL A S, DUYTS H, et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2[J]. Proceedings of the National Academy of Sciences, 2010, 107(24):10938-10942. DOI: 10.1073/pnas.0912421107.
doi: 10.1073/pnas.0912421107 |
[85] |
MA Z Q, GUO D L, XU X L, et al. Evolutionary history resolves global organization of root functional traits[J]. Nature, 2018, 555(7694):94-97. DOI: 10.1038/nature25783.
doi: 10.1038/nature25783 |
[86] |
MAJDI H, DAMM E, NYLUND J E. Longevity of mycorrhizal roots depends on branching order and nutrient availability[J]. New Phytologist, 2001, 150(1):195-202. DOI: 10.1046/j.1469-8137.2001.00065.x.
doi: 10.1046/j.1469-8137.2001.00065.x |
[87] |
VALENZUELA-ESTRADA L R, VERA-CARABALLO V, RUTH L E, et al. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae)[J]. American Journal of Botany, 2008, 95(12):1506-1514. DOI: 10.3732/ajb.0800092.
doi: 10.3732/ajb.0800092 |
[88] |
XIA M X, GUO D L, PREGITZER K S. Ephemeral root modules in Fraxinus mandshurica[J]. New Phytologist, 2010, 188(4):1065-1074. DOI: 10.1111/j.1469-8137.2010.03423.x.
doi: 10.1111/nph.2010.188.issue-4 |
[89] |
HOOKER J E, MUNRO M, ATKINSON D. Vesicular-arbuscular mycorrhizal fungi induced alteration in poplar root system morphology[J]. Plant and Soil, 1992, 145(2):207-214. DOI: 10.1007/bf00010349.
doi: 10.1007/BF00010349 |
[90] |
CHEN H Y, BRASSARD B W. Intrinsic and extrinsic controls of fine root life span[J]. Critical Reviews in Plant Sciences, 2013, 32(3):151-161. DOI: 10.1080/07352689.2012.734742.
doi: 10.1080/07352689.2012.734742 |
[91] |
SIERLA M, WASZCZAK C, VAHISALU T, et al. Reactive oxygen species in the regulation of stomatal movements[J]. Plant Physiology, 2016, 171(3):1569-1580. DOI: 10.1104/pp.16.00328.
doi: 10.1104/pp.16.00328 |
[92] |
GECHEV T S, HILLE J. Hydrogen peroxide as a signal controlling plant programmed cell death[J]. The Journal of Cell Biology, 2005, 168(1):17-20. DOI: 10.1083/jcb.200409170.
doi: 10.1083/jcb.200409170 |
[93] |
MITTLER R, VANDERAUWERA S, SUZUKI N, et al. ROS signaling: the new wave?[J]. Trends in Plant Science, 2011, 16(6):300-309. DOI: 10.1016/j.tplants.2011.03.007.
doi: 10.1016/j.tplants.2011.03.007 |
[94] |
DIETZ K J, MITTLER R, NOCTOR G. Recent progress in understanding the role of reactive oxygen species in plant cell signaling[J]. Plant Physiology, 2016, 171(3):1535-1539. DOI: 10.1104/pp.16.00938.
doi: 10.1104/pp.16.00938 |
[95] | ROUHIER N, JACQUOT J P. Plant peroxiredoxins: alternative hydroperoxide scavenging enzymes[J]. Photosynjournal Research, 2002, 74(3):259-268. DOI: 10.1023/A:1021218932260. |
[96] |
PASSARDI F, ZAMOCKY M, FAVET J, et al. Phylogenetic distribution of catalase-peroxidases: are there patches of order in chaos?[J]. Gene, 2007, 397(1/2):101-113. DOI: 10.1016/j.gene.2007.04.016.
doi: 10.1016/j.gene.2007.04.016 |
[97] | KELLER T, DAMUDE H G, WERNER D, et al. A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs[J]. Plant Cell, 1998, 10(2):255-266.DOI: 10.1039/b205303a. |
[98] |
SAGI M, FLUHR R. Production of reactive oxygen species by plant NADPH oxidases[J]. Plant Physiology, 2006, 141(2):336-340. DOI: 10.1104/pp.106.078089.
doi: 10.1104/pp.106.078089 |
[99] |
BAXTER A, MITTLER R, SUZUKI N. ROS as key players in plant stress signaling[J]. Journal of Experimental Botany, 2014, 65(5):1229-1240. DOI: 10.1093/jxb/ert375.
doi: 10.1093/jxb/ert375 |
[100] | 段倩倩, 杨晓红, 黄先智. 植物与丛植菌根真菌在共生早期的信号交流[J]. 微生物学报, 2015, 55(7):819-825. DOI: 10.13343/j.cnki.wsxb.20140438. |
DUAN Q Q, YANG X H, HUANG X Z. Signal exchange between plants and arbuscular mycorrhizae fungi during the early stage of symbiosis: a review[J]. Acta Microbiologica Sinica, 2015, 55(7):819-825. | |
[101] |
NANDA A K, ANDRIO E, MARINO D, et al. Reactive oxygen species during plant-microorganism early interactions[J]. Journal of Integrative Plant Biology, 2010, 52(2):195-204. DOI: 10.1111/j.1744-7909.2010.00933.x.
doi: 10.1111/jipb.2010.52.issue-2 |
[102] |
SMITHWICK E A H, EISSENSTAT D M, LOVETT G M, et al. Root stress and nitrogen deposition: consequences and research priorities[J]. New Phytologist, 2013, 197(3):712-719. DOI: 10.1111/nph.12081.
doi: 10.1111/nph.2013.197.issue-3 |
[1] | 向钰, 丁雨龙, 张春霞, 魏强. 矢竹地下茎节间生长的解剖学和转录组研究[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 33-40. |
[2] | 程淑娟,唐东芹,刘群录. 盐胁迫对两种忍冬属植物活性氧平衡的影响[J]. 南京林业大学学报(自然科学版), 2013, 37(01): 137-141. |
[3] | 王广林1,2,张金池1*,王丽1,王友保3. 铜、锌胁迫对丁香蓼生理指标的影响[J]. 南京林业大学学报(自然科学版), 2009, 33(04): 43-47. |
[4] | 王媛1,2,梁军1,张星耀1*. 抗、感病杨树与溃疡病菌互作中活性氧及相关酶的动态[J]. 南京林业大学学报(自然科学版), 2008, 32(05): 41-46. |
[5] | 尹增芳,樊汝汶. 杨树筛管/伴胞复合体细胞程序性死亡的超微结构分析[J]. 南京林业大学学报(自然科学版), 2007, 31(05): 1-5. |
[6] | 甘小洪1,2,丁雨龙1. 毛竹茎竿纤维细胞发育过程中酸性磷酸酶的动态变化[J]. 南京林业大学学报(自然科学版), 2006, 30(03): 13-18. |
[7] | 陈玉惠;叶建仁;魏初奖;杨小明. 松材线虫对黑松、湿地松幼苗活性氧代谢的影响[J]. 南京林业大学学报(自然科学版), 2002, 26(04): 19-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||