淹水处理下杨树不同无性系苗木根系形态变化

赵小军, 程方, 张康, 黄开栋, 倪云, 孟晓, 唐罗忠

南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (5) : 1-8.

PDF(1649 KB)
PDF(1649 KB)
南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (5) : 1-8. DOI: 10.3969/j.issn.1000-2006.201808044
研究论文

淹水处理下杨树不同无性系苗木根系形态变化

作者信息 +

Root morphology of different poplar clone stecklings under waterlogging and flooding treatment

Author information +
文章历史 +

摘要

【目的】了解淹水处理下不同杨树无性系苗木根系的形态变化规律,揭示杨树对淹水胁迫的根系适应策略,为筛选耐水的杨树无性系提供依据。【方法】选用3804杨、1388杨、895杨、110杨和328杨5个杨树无性系,设置对照、渍水和淹水3种处理,测定苗木根系的生物量、长度、数量、表面积、体积等指标。【结果】①渍水处理下杨树根生物量与对照无显著差异,但淹水处理下的根生物量却显著小于对照。②渍水和淹水处理下的多数杨树无性系苗木一级根数量与对照之间没有显著差异,但总根长、总根投影面积、总根表面积和总根体积却大于对照。③与对照相比,渍水和淹水处理下的杨树苗木根系平均直径有所减小,但根尖数、分叉数和交叉数却增大。④主成分分析提取出的2个主成分累积贡献率为88.58%,可较好地反映杨树苗木根系形态特征。【结论】隶属函数法分析表明,在渍水处理下5个杨树无性系根系形态表现的优劣顺序是1388杨>895杨>3804杨>110杨>328杨;在淹水处理下的优劣顺序是1388杨>895杨>110杨>328杨>3804杨。所以,从根系形态表现看,1388杨和895杨的耐水性较强。

Abstract

【Objective】 In this study, the root morphology of different poplar (Populus sp.) clone seedlings under waterlogging and flooding treatment was explored, and the adaptive strategies of the poplar root system were elucidated to provide a scientific basis for the selection of poplar clones. 【Method】 Five poplar clones, i.e., 3804, 1388, 895, 110 and 328, were selected, and three treatments, i.e., control, waterlogging and flooding, were set up to determine the effects of different treatments on root characteristics such as biomass, total length, quantity, surface area and volume. 【Result】 ① There was no significant difference between the control and waterlogging groups in terms of poplar root biomass; however, in the flooding group, root biomass was significantly lower than that in the control group. ② No significant difference was found in terms of the number of first-order roots of most poplar clone stecklings between the treatment and control groups, but the total root length, projection area, surface area and volume were greater in the treatment groups than in the control group. ③ Compared with the control group, the treatment groups had decreased average root diameter but had increased number of root tips, root forks and root crossings. ④ The cumulative contribution rate of the two principal components extracted by principal component analysis was 88.58%, which may reflect the root morphological characteristics of poplar clone stecklings. 【Conclusion】 Subordinate function analysis showed that the order of the poplar clone stecklings based on root morphological performance for both treatment was as follows: waterlogging treatment, poplar 1388 > poplar 895>poplar 3804>poplar 110>poplar 328 and flooding treatment, poplar 1388>poplar 895>poplar 110>poplar 328>poplar 3804. In conclusion, based on the root morphology, we suggest that poplar 1388 and poplar 895 are more resistant to waterlogging and flooding among all studied poplar clone stecklings.

关键词

杨树无性系 / 渍水处理 / 淹水处理 / 根系形态 / 综合评价

Key words

poplar (Populus spp.) clone / waterlogging treatment / flooding treatment / root morphology / comprehensive evaluation

引用本文

导出引用
赵小军, 程方, 张康, . 淹水处理下杨树不同无性系苗木根系形态变化[J]. 南京林业大学学报(自然科学版). 2019, 43(5): 1-8 https://doi.org/10.3969/j.issn.1000-2006.201808044
ZHAO Xiaojun, CHENG Fang, ZHANG Kang, et al. Root morphology of different poplar clone stecklings under waterlogging and flooding treatment[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2019, 43(5): 1-8 https://doi.org/10.3969/j.issn.1000-2006.201808044
中图分类号: S718   

参考文献

[1]
李合生. 现代植物生理学[M]. 3版. 北京: 高等教育出版社, 2012.
LI H S. Modern plant physiology [M]. 3rd ed. Beijing: Higher Education Press, 2012.
[2]
汪贵斌, 蔡金峰, 何肖华. 涝渍胁迫对喜树幼苗形态和生理的影响[J]. 植物生态学报, 2009, 33(1):134-140. DOI: 10.3773/j.issn.1005-264X.2009.01.015.
摘要
为了解喜树对涝渍土壤条件的适应性, 通过温室土培盆栽试验, 从形态和生理两方面探讨了涝渍胁迫对1年生喜树(Camptotheca acuminata)实生苗的影响, 试验分对照、轻度渍水、渍水和淹水等4个处理, 处理时间为 21 d。结果表明, 喜树根系生长以轻度渍水最好, 其次为对照, 而渍水和淹水的处理初生根系逐渐腐烂、死亡, 与之相对应, 轻度渍水处理的根系活力与对照无显著差异, 但渍水和淹水处理随着处理时间的延长逐渐下降, 同时观察到渍水和淹水的喜树茎在水面以下部位出现较多的皮孔。随着处理时间的延长, 轻度渍水处理喜树叶片内POD和SOD活性一直保持较高水平, 渍水和淹水处理则表现出先升高后下降的趋势, 各个处理叶片中O2–• 、H2O2和MDA含量有逐渐升高的趋势, 且各处理之间均表现为淹水>渍水>轻度淹水>对照。各处理根系LDH活性在处理前期较对照低, 而在处理的中后期, LDH活性均比对照高, 以渍水和淹水处理最高。因此, 喜树在轻度渍水条件下, 一方面由于皮孔和不定根的增多, 根系能够获得更多的氧气, 另一方面由于POD和SOD抗氧化酶活性的增强, 降低了O2–•和H2O2对细胞的伤害, 喜树能够在轻度渍水的立地上正常生长。
WANG G B, CAI J F, HE X H. Effects of waterlogging stress on morphology and physiology of Camptotheca acuminata [J]. Chinese Journal of Plant Ecology, 2009, 33(1):134-140.
[3]
GOMES A R S, KOZLOWSKI T T. Effects of flooding on Eucalyptus camaldulensis and Eucalyptus globulus seedlings[J]. Oecologia, 1980, 46(2):139-142. DOI: 10.1007/BF00540117.
[4]
卢妍. 湿地植物对淹水条件的响应机制[J]. 自然灾害学报, 2010, 19(4):147-151. DOI: 10.13577/j.jnd.2010.0423.
LU Y. Response mechanism of wetland plants to submerged conditions[J]. Journal of Natural Disasters, 2010, 19(4):147-151.
[5]
吴泽民, 孙启祥, 段文秀. 安徽长江滩地杨树人工林个体生长与水淹状况的关系[J]. 应用生态学报, 2000, 11(1):25-29. DOI: 10.13287/j.1001-9332.2000.0007.
WU Z M, SUN Q X, DUAN W X. Relationship between flooded situation and poplar growth on beach land of Yangtze River in Anhui[J]. Chinese Journal of Applied Ecology, 2000, 11(1):25-29.
[6]
汤玉喜, 吴立勋, 徐世凤, 等. 滩地淹水胁迫对杨树生长影响的研究[J]. 湖南林业科技, 2002, 29(1):14-17. DOI: 10.3969/j.issn.1003-5710.2002.01.004.
TANG Y X, WU L X, XU S F. et al. The effect on poplar growth from beach flooding[J]. Hunan Forestry Science and Technology, 2002, 29(1):14-17.
[7]
唐罗忠, 徐锡增, 方升佐. 土壤涝渍对杨树和柳树苗期生长及生理性状影响的研究[J]. 应用生态学报, 1998, 9(5):471-474. DOI: 10.13287/j.1001-9332.1998.0101.
TANG L Z, XU X Z, FANG S Z. Influence of soil waterlogging on growth and physiological properties of poplar and willow seedlings[J]. Chinese Journal of Applied Ecology, 1998, 9(5):471-474.
[8]
GONG J R, ZHANG X S, HUANG Y M, et al. The effects of flooding on several hybrid poplar clones in Northern China[J]. Agroforestry Systems, 2007, 69(1):77-88. DOI: 10.1007/s10457-006-9019-4.
[9]
IMADA S, YAMANAKA N, TAMAI S. Water table depth affects Populus alba fine root growth and whole plant biomass[J]. Functional Ecology, 2008, 22(6):1018-1026. DOI: 10.1111/j.1365-2435.2008.01454.x.
[10]
徐锡增, 唐罗忠, 程淑婉. 涝渍胁迫下杨树内源激素及其它生理反应[J]. 南京林业大学学报(自然科学版), 1999, 23(1):1-5. DOI: 10.3969/j.issn.1000-2006.1999.01.001.
XU X Z, TANG L Z, CHENG S W. A study on hormones and other physiological effects of poplar clones under flooding stress[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 1999, 23(1):1-5.
[11]
高健, 侯成林, 吴泽民. 淹水胁迫对I-69/55杨蒸腾作用的影响[J]. 应用生态学报, 2000, 11(4):518-522. DOI: 10.13287/j.1001-9332.2000.0127.
GAO J, HOU C L, WU Z M. Effect of flooding stress on transpiration of poplar I-69/55[J]. Chinese Journal of Applied Ecology, 2000, 11(4):518-522.
[12]
杜克兵, 许林, 涂炳坤, 等. 淹水胁迫对2种杨树1年生苗叶片超微结构和光合特性的影响[J]. 林业科学, 2010, 46(6):58-64. DOI: 10.11707/j.1001-7488.20100609.
DU K B, XU L, TU B K, et al. Influences of soil flooding on ultrastructure and photosynthetic capacity of leaves of one-year oldseedlings of two poplar clones[J]. Scientia Silvae Sinicae, 2010, 46(6):58-64.
[13]
洪光宇, 鲍雅静, 周延林, 等. 退化草原羊草种群根系形态特征对水分梯度的响应[J]. 中国草地学报, 2013, 35(1):73-78. DOI: 10.3969/j.issn.1673-5021.2013.01.012.
HONG G Y, BAO Y J, ZHOU Y L, et al. Response of root system of Leymus chinensis population to water gradient in degraded grassland [J]. Chinese Journal of Grassland, 2013, 35(1):73-78.
[14]
李帅, 赵国靖, 徐伟洲, 等. 白羊草根系形态特征对土壤水分阶段变化的响应[J]. 草业学报, 2016, 25(2):169-177. DOI: 10.11686/cyxb2015171.
LI S, ZHAO G J, XU W Z, et al. Responses of old world bluestem root systems to changes in soil water conditions[J]. Acta Prataculturae Sinica, 2016, 25(2):169-177.
[15]
DASA K K, PANDAA D, SARKARA R K, et al. Submergence tolerance in relation to variable floodwater conditions in rice[J]. Environmental and Experimental Botany, 2009, 66(3):425-434. DOI: 10.1016/j.envexpbot.2009.02.015.
[16]
朱桂才, 高树杰, 张霞. 李氏禾根系生长对淹水胁迫及解除的响应[J]. 长江大学学报(自然科学版), 2010, 7(4):52-55. DOI: 10.3969/j.issn.1673-1409(S).2010.04.015.
ZHU G C, GAO S J, ZHANG X. Response of Leersia herxandra root growth status subjected to flooding stress and rescission [J]. Journal of Yangtze University (Natural Science Edition), 2010, 7(4):52-55.
[17]
BAYUELOJIMENEZ J S, GALLARDOVALDEZ M, PEREZDECELIS V A, et al. Genotypic variation for root traits of maize (Zea mays L.) from the Purhepecha plateau under contrasting phosphorus availability[J]. Field Crops Research, 2011, 121(3):350-362. DOI: 10.1016/j.fcr.2011.01.001.
[18]
蔡丽平, 吴鹏飞, 侯晓龙, 等. 类芦根系对不同强度干旱胁迫的形态学响应[J]. 中国农学通报, 2012, 28(28):44-48. DOI: 10.3969/j.issn.1000-6850.2012.28.008.
CAI L P, WU P F, HOU X L, et al. Morphological response to different drought stress in the roots of Neyraudia reynaudiana [J]. Chinese Agricultural Science Bulletin, 2012, 28(28):44-48.
[19]
任爱天, 鲁为华, 杨洁晶, 等. 棉花、苜蓿细根生长和死亡的季节变化[J]. 草业学报, 2015, 24(6):213-219. DOI: 10.11686/cyxb2014319.
REN A T, LU W H, YANG J J, et al. Seasonal change patterns in the production and mortality of fine roots in cotton and alfalfa[J]. Acta Prataculturae Sinica, 2015, 24(6):213-219.
[20]
CLARK L J, PRICE A H, STEELE K A, et al. Evidence from near-isogenic lines that root penetration increases with root diameter and bending stiffness in rice[J]. Functional Plant Biology, 2008, 35(11):1163-1171. DOI: 10.1071/FP08132.
[21]
BAILEY-SERRES J, VOESENEK L A C J. Flooding stress: acclimations and genetic diversity[J]. Annual Review of Plant Biology, 2008, 59:313-339. DOI: 10.1146/annurev.arplant.59.032607.092752.
[22]
SAIRAM R K, KUMUTHA D, EZHILMATHI K, et al. Physiology and biochemistry of waterlogging tolerance in plants[J]. Biologia Plantarum, 2008, 52(3):401-412. DOI: 10.1007/s10535-008-0084-6.

基金

“十二五”国家科技支撑计划(2015BAD09B02)
江苏高校优势学科建设工程资助项目(PAPD)

编辑: 郑琰燚

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1649 KB)

Accesses

Citation

Detail

段落导航
相关文章

/