[1] |
HEATH L S, HANSEN M H, SMITH J E, et al. Investigation into calculating tree biomass and carbon in the FIADB using a biomass expansion factor approach[C]// USDA Forest Service Rocky Mountain Research Station, 2009.
|
[2] |
孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2006.
|
|
MENG X Y. Tree survey[M]. Beijing: China Forestry Publishing House, 2006.
|
[3] |
GROSENBAUGH L R. STX-Fortran-4 program for estimates of tree populations from 3P sample-tree-measurements[R]. USDA Forest Serv Res Pap Psw, 1967.
|
[4] |
LAASASENAHO J, MELKAS T, ALDÉN S. Modelling bark thickness of Picea abies with taper curves[J]. Forest Ecology and Management, 2005, 206(1/2/3):35-47. DOI: 10.1016/j.foreco.2004.10.058
doi: 10.1016/j.foreco.2004.10.058
|
[5] |
MAX T, BURKHART H. Segmented polynomial regression applied to taper equations[J]. Forest Science, 1976, 22(3):283-289.
|
[6] |
MALONE T, LIANG J J. A bark thickness model for white spruce in Alaska northern forests[J]. International Journal of Forestry Research, 2009: 1-5. DOI: 10.1155/2009/876965.
|
[7] |
KOZAK A, YANG R C. Equations for estimating bark volume and thickness of commercial trees in British Columbia[J]. The Forestry Chronicle, 1981, 57(3):112-115. DOI: 10.5558/tfc57112-3
doi: 10.5558/tfc57112-3
|
[8] |
COURBET F, HOULLIER F. Modelling the profile and internal structureof tree stem. application to Cedrus atlantica (Manetti)[J]. Annals of Forest Science, 2002, 59(1):63-80. DOI: 10.1051/forest:2001006.
doi: 10.1051/forest:2001006
|
[9] |
LI R X, WEISKITTEL A R. Estimating and predicting bark thickness for seven conifer species in the Acadian Region of North America using a mixed-effects modeling approach: comparison of model forms and subsampling strategies[J]. European Journal of Forest Research, 2011, 130(2):219-233. DOI: 10.1007/s10342-010-0423-y.
doi: 10.1007/s10342-010-0423-y
|
[10] |
王晓林, 蔡可旺, 姜立春. 落叶松树皮厚度变化规律的研究[J]. 森林工程, 2011, 27(2):8-11. DOI: 10.16270/j.cnki.slgc.2011.02.022.
|
|
WANG X L, CAI K W, JIANG L C. Study on bark thickness of dahurian larch[J]. Forest Engineering, 2011, 27(2):8-11.
|
[11] |
王君山, 闫菁. 树皮厚度和树皮系数变化规律的研究[J]. 河北林果研究, 2011, 26(3):235-237.
|
|
WANG J S, YAN J. Rules of bark thickness and bark coefficient[J]. Hebei Journal of Forestry and Orchard Research, 2011, 26(3):235-237.
|
[12] |
郭孝玉, 孙玉军, 马炜, 等. 适于FVS的长白落叶松树皮因子[J]. 东北林业大学学报, 2011, 39(10):28-31. DOI: 10.13759/j.cnki.dlxb.2011.10.037.
|
|
GUO X Y, SUN Y J, MA W, et al. Bark factor of Larix olgensis suitable for forest vegetation simulator [J]. Journal of Northeast Forestry University, 2011, 39(10):28-31.
|
[13] |
FANG Z, BALEY R L. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive sil-vicultural treatments[J]. Forest Science, 2001, 47:287-300.
|
[14] |
JIANG L C, DU S L, LI F R. Simulation of Larix gmelinii tree volume growth based on random effect[J]. The Journal of Applied Ecology, 2011, 22(11):2963-2969.
|
[15] |
CALEGARIO N, DANIELS R F, MAESTRI R, et al. Modeling dominant height growth based on nonlinear mixed-effects model: a clonal Eucalyptus plantation case study[J]. Forest Ecology and Management, 2005, 204(1):11-21. DOI: 10.1016/j.foreco.2004.07.051
doi: 10.1016/j.foreco.2004.07.051
|
[16] |
姜立春, 刘瑞龙. 基于非线性混合模型的落叶松树干削度模型[J]. 林业科学, 2011, 47(4):101-106.
|
|
JIANG L C, LIU R L. A stem taper model with nonlinear mixed effects for dahurian larch[J]. Scientia Silvae Sinicae, 2011, 47(4):101-106.
|
[17] |
GROOM J D, HANN D W, TEMESGEN H. Evaluation of mixed-effects models for predicting Douglas-fir mortality[J]. Forest Ecology and Management, 2012, 276:139-145. DOI: 10.1016/j.foreco.2012.03.029.
doi: 10.1016/j.foreco.2012.03.029
|
[18] |
JIANG L C, ZHANG R, LI F R. Modeling branch length and branch angle with linear mixed effects for dahurian larch[J]. Forestry Science and Technology, 2012, 11(3):57.
|
[19] |
HEIN S, MÄKINEN H, YUE C F, et al. Modelling branch characteristics of Norway spruce from wide spacings in Germany[J]. Forest Ecology and Management, 2007, 242(2/3):155-164. DOI: 10.1016/j.foreco.2007.01.014.
doi: 10.1016/j.foreco.2007.01.014
|