基于Sentinel⁃1和Sentinel⁃2数据的杉木林地上生物量估算

潘磊, 孙玉军, 王轶夫, 陈丽萍, 曹元帅

南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (3) : 149-156.

PDF(880 KB)
PDF(880 KB)
南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (3) : 149-156. DOI: 10.3969/j.issn.1000-2006.201811012
研究论文

基于Sentinel⁃1和Sentinel⁃2数据的杉木林地上生物量估算

作者信息 +

Estimation of aboveground biomass in a Chinese fir (Cunninghamia lanceolata)forest combining data of Sentinel⁃1 and Sentinel⁃2

Author information +
文章历史 +

摘要

目的

雷达和光学遥感数据可以提供不同方面的信息,利用Sentinel?1与Sentinel?2联合估算亚热带地区森林地上生物量,探索光学数据与合成孔径雷达(SAR)数据结合对于提高森林地上生物量估测的优势。

方法

以福建省将乐国有林场杉木林为研究对象,以Sentinel?1 SAR数据和Sentinel?2光学数据为数据源,采用多元线性逐步回归方法进行建模,以决定系数(R2)、调整决定系数(R2adj)、均方根误差(RMSE)、方差膨胀因子(VIF)为模型评价指标,对比分析Sentinel?2光学数据与Sentinel?2结合Sentinel?1 SAR数据估算森林地上生物量的能力。

结果

基于Sentinel?2光学数据的森林地上生物量估算模型,其调整决定系数(R2adj)达到0.501、均方根误差(RMSE)为64.04 Mg/hm2;Sentinel?2光学数据结合Sentinel?1 SAR数据的森林地上生物量估算模型,其调整决定系数(R2adj)达到0.575、均方根误差(RMSE)为59.13 Mg/hm2,对比Sentinel?2估算模型,该模型精度有明显提高。

结论

Sentinel?2卫星的多光谱数据能够作为估算亚热带地区森林地上生物量的有效数据,加入Sentinel?1 SAR影像的极化纹理信息后,利用Sentinel?1雷达传感器的全天候获取数据能力与Sentinel?2多光谱传感器丰富的光谱波段信息特点,以及两者短重访周期的能力,能够有效提高估算森林地上生物量模型的精度。

Abstract

Objective

Forest above-ground biomass (AGB) is the main storage site of carbon, which plays an important role in the regional and global carbon cycle. In studies on AGB estimation based on remote sensing, saturation of optical and radar data is a well-known phenomenon, however, it is unclear so far as to how this problem may be reduced in order to improve AGB estimations. Optical and radar data offer different advantages for recording forest stand structures, thus optimized use of their features may help improve AGB estimation. This study was conducted to assess whether forest AGB estimations can be produced in a subtropical area based on data produced using Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 multispectral instruments.

Method

A stand of Chinese fir (Cunninghamia lanceolata) in a state-owned forest farm in Jiangle, Fujian Province, China, and Sentinel-1 SAR data and Sentinel-2 multispectral optical data were used. Backscatter coefficients of Sentinel-1 images in different polarization modes (VH, VV, VH/VV) and second-order texture measures of a gray level co-occurrence matrix in different window sizes (3×3, 5×5, 7×7 and 9×9) were recorded, and band values, vegetation indices, and second-order texture measures in 3 × 3 windows of Sentinel-2 image were extracted as remote sensing factors. Models were fitted using multiple linear stepwise regression. AGB estimation models based on Sentinel-2 remote sensing factors only and on cooperative Sentinel-2 and Sentinel-1 remote sensing were established. Determination coefficient (R2), adjusted determination coefficient (Radj2), root mean square error (RMSE), and variance inflation factor were selected for assessing the models. The ability of Sentinel-2 optical data and Sentinel-2 optical data combined with Sentinel-1 SAR data to estimate forest AGB was compared and analyzed.

Result

The results showed that when Sentinel-2 band values, vegetation indices and texture measures were used as dependent variables to predict AGB, the estimation effect was inadequate, and the Radj2 values of the models were 0.319, 0.303 and 0.455, respectively; an AGB estimation model based on all remote sensing factors of Sentinel-2 optical data (Model-1) produced an Radj2 value of 0.501, while RMSE was 64.04 Mg/hm2. When the Sentinel-1 remote sensing factor was added, the AGB estimation model based on Sentinel-2 optical data and Sentinel-1 SAR data was improved, with a model adjustment coefficient (Radj2) and RMSE were 0.575 and 59.13 Mg/hm2. Compared with Model-1, the accuracy of Model-2 was considerably improved, thus the second-order texture measures of Sentinel-1 VH polarimetric imaging plays an important role.

Conclusion

Our study demonstrates that multispectral optical data of the Sentinel-2 satellite can be used as reliable data source for estimating forest AGB in subtropical areas, and the combination of Sentinel-1 SAR data and Sentinel-2 multispectral optical data can substantially improve accuracy of estimating forest AGB. Estimations of forest ABG by combining multispectral optical remote sensing images and space-borne polarimetric SAR data offers considerable advantages. The results of the present study may help improve accuracy of forest AGB estimation, and it provides a reference basis for future studies on forest AGB using different remote sensing data sources.

关键词

杉木林 / 地上生物量 / Sentinel?1 / Sentinel?2 / 纹理 / 估测模型

Key words

Chinese fir forest / aboveground biomass / Sentinel-1 / Sentinel-2 / texture / regression model

引用本文

导出引用
潘磊, 孙玉军, 王轶夫, 陈丽萍, 曹元帅. 基于Sentinel⁃1和Sentinel⁃2数据的杉木林地上生物量估算[J]. 南京林业大学学报(自然科学版). 2020, 44(3): 149-156 https://doi.org/10.3969/j.issn.1000-2006.201811012
PAN Lei, SUN Yujun, WANG Yifu, CHEN Liping, CAO Yuanshuai. Estimation of aboveground biomass in a Chinese fir (Cunninghamia lanceolata)forest combining data of Sentinel⁃1 and Sentinel⁃2[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2020, 44(3): 149-156 https://doi.org/10.3969/j.issn.1000-2006.201811012
中图分类号: S758.5   

参考文献

1 HOUGHTON R A. Aboveground forest biomass and the global carbon balance[J]. Glob Chang Biol,2005,11(6):945-958.DOI:10.1111/j.1365-2486.2005.00955.x.
2 HOLLMANN R,MERCHANT C J,SAUNDERS R,et al. The ESA climate change initiative:satellite data records for essential climate variables[J]. Bull Amer Meteor Soc,2013,94(10):1541-1552. DOI:10.1175/bams-d-11-00254.1.
3 HEIMANN M,REICHSTEIN M. Terrestrial ecosystem carbon dynamics and climate feedbacks[J]. Nature,2008,451(7176):289-292. DOI:10.1038/nature06591.
4 刘茜,杨乐,柳钦火,等. 森林地上生物量遥感反演方法综述[J]. 遥感学报,2015,19(1):62-74.
4 LIU Q,YANG L,LIU Q H,et al.Review of forest above ground biomass inversion methods based on remote sensing technology[J]. J Remote Sens,2015,19(1):62-74.
5 陈玲,郝文乾,高德亮. 光学影像纹理信息在林业领域的最新应用进展[J]. 北京林业大学学报,2015,37(3):1-12.
5 CHEN L,HAO W Q,GAO D L. The latest applications of optical image texture in forestry[J]. J Beijing For Univ,2015,37(3):1-12.DOI:10.13332/j.1000-1522.20140304.
6 张佳华,符淙斌. 生物量估测模型中遥感信息与植被光合参数的关系研究[J]. 测绘学报,1999,28(2):128-132.
6 ZHANG J H,FU C B. A study on relationships between remote sensing information and plant photosynthetic parameters in estimating biomass model[J]. Acta Geod Et Cartogr Sin,1999,28(2):128-132.DOI:10.3321/j.issn:1001-1595.1999.02.004.
7 李明诗,谭莹,潘洁,等. 结合光谱、纹理及地形特征的森林生物量建模研究[J]. 遥感信息,2006,21(6):6-9,66.
7 LI M S,TAN Y,PAN J,et al. Modeling forest aboveground biomass by combining the spectrum,textures with topographic features[J]. Remote Sens Inf,2006,21(6):6-9,66. DOI:10.3969/j.issn.1000-3177.2006.06.003.
8 王长委,胡月明,沈德才,等. 基于CBERS数据的亚热带森林地上碳储量估算[J]. 林业科学,2014,50(1):88-96.
8 WANG C W,HU Y M,SHEN D C,et al. Assessing the capability of CBERS?02B CCD for estimating subtropical forest above ground carbon storage[J]. Sci Silvae Sin,2014,50(1):88-96. DOI:10.11707/j.1001-7488.20140114.
9 ZHANG L J,SHAO Z F,WANG Z G. Estimation of forest aboveground biomass using the integration of spectral and textural features from GF?1 satellite image[C]//2016 4th International Workshop on Earth Observation and Remote Sensing Applications (EORSA),July4-6,2016.
10 向安民,刘凤伶,于宝义,等.基于k?NN方法和GF遥感影像的森林蓄积量估测[J]. 浙江农林大学学报,2017,34(3):406-412.
10 XIANG A M,LIU F L,YU B Y,et al. Forest stock volume estimation based on the k?NN method and GF remote sensing data[J]. J Zhejiang A&F Univ,2017,34(3):406-412.DOI:10.11833/j.issn.2095-0756.2017.03.004.
11 HYDE P,DUBAYAH R,WALKER W,et al. Mapping forest structure for wildlife habitat analysis using multi?sensor (LiDAR,SAR/InSAR,ETM+,Quickbird) synergy[J]. Remote Sens Environ,2006,102(1/2):63-73. DOI:10.1016/j.rse. 2006.01.021.
12 ECKERT S. Improved forest biomass and carbon estimations using texture measures from WorldView?2 satellite data[J]. Remote Sens,2012,4(4):810-829. DOI:10.3390/rs4040810.
13 黄金龙,居为民,郑光,等. 基于高分辨率遥感影像的森林地上生物量估算[J]. 生态学报,2013,33(20):6497-6508.
13 HUANG J L,JU W M,ZHENG G,et al. Estimation of forest aboveground biomass using high spatial resolution remote sensing imagery[J]. Acta Ecol Sin,2013,33(20):6497-6508.DOI:10.5846/stxb201212211841.
14 徐小军,周国模,杜华强,等. 基于Landsat TM数据估算雷竹林地上生物量[J]. 林业科学,2011,47(9):1-6.
14 XU X J,ZHOU G M,DU H Q,et al. Estimation of aboveground biomass of Phyllostachyspraecox forest based on Landsat Thematic Mapper image[J]. Sci Silvae Sin,2011,47(9):1-6.
15 LU D S,BATISTELLA M. Exploring TM image texture and its relationships with biomass estimation in Rond?nia,Brazilian Amazon[J]. Acta Amaz,2005,35(2):249-257. DOI:10.1590/s0044-59672005000200015.
16 YANG C J,HUANG H,WANG S Y. Estimation of tropical forest biomass using Landsat TM imagery and permanent plot data in Xishuangbanna,China[J]. Int J Remote Sens,2011,32(20):5741-5756. DOI:10.1080/01431161.2010.507677.
17 郭云,李增元,陈尔学,等. 甘肃黑河流域上游森林地上生物量的多光谱遥感估测[J]. 林业科学,2015,51(1):140-149.
17 GUO Y,LI Z Y,CHEN E X,et al. Estimating forest above??ground biomass in the upper reaches of Heihe River basin using multi?spectral remote sensing[J]. Sci Silvae Sin,2015,51(1):140-149. DOI:10.11707/j.1001-7488.20150117.
18 李明阳,吴军,余超,等. 福建武夷山自然保护区森林碳储量遥感估测方法与空间分析[J]. 南京林业大学学报(自然科学版),2014,38(6):6-10.
18 LI M Y,WU J,YU C,et al. Estimation and spatial analysis of forest carbon stocks based on remote sensing technology in Wuyi Mountain National Reserve of Fujian Province[J]. J Nanjing For Univ (Nat Sci Ed),2014,38(6):6-10. DOI:10.3969/j.issn.1000-2006.2014.06.002.
19 王月婷,张晓丽,杨慧乔,等. 基于Landsat 8卫星光谱与纹理信息的森林蓄积量估算[J]. 浙江农林大学学报,2015,32(3):384-391.
19 WANG Y T,ZHANG X L,YANG H Q,et al.Forest volume estimation based on spectral and textural information from the Landsat 8 satellite[J]. J Zhejiang A&F Univ,2015,32(3):384-391. DOI:10.11833/j.issn.2095-0756.2015.03.008.
20 孙玉军,王新杰,马炜,等. 林改区域典型树种森林碳储量监测技术研究[M]. 北京: 中国林业出版社, 2014:34-67.
21 HARALICK R M. Statistical and structural approaches to texture[J]. Proc IEEE,1979,67(5):786-804. DOI:10.1109/proc. 1979.11328.
22 LU D S,CHEN Q,WANG G X,et al. Aboveground forest biomass estimation with landsat and LiDAR data and uncertainty analysis of the estimates[J]. Int J For Res,2012,2012:ID436537:1-16. DOI:10.1155/2012/436537.
23 ZHAO P P,LU D S,WANG G X,et al. Examining spectral reflectance saturation in landsat imagery and corresponding solutions to improve forest aboveground biomass estimation[J]. Remote Sens,2016,8(6):469. DOI:10.3390/rs8060469.
24 LU D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon[J]. Int J Remote Sens,2005,26(12):2509-2525. DOI:10.1080/01431160500142145.
25 STEININGER M K. Satellite estimation of tropical secondary forest above?ground biomass:data from Brazil and Bolivia[J]. Int J Remote Sens,2000,21(6/7):1139-1157. DOI:10.1080/014311600210119.
26 KUPLICH T M,CURRAN P J,ATKINSON P M. Relating SAR image texture to the biomass of regenerating tropical forests[J].Int J Remote Sens,2005,26(21):4829-4854. DOI:10.1080/01431160500239107.
27 SARKER L R,NICHOL J E. Improved forest biomass estimates using ALOS AVNIR?2 texture indices[J]. Remote Sens Environ,2011,115(4):968-977. DOI:10.1016/j.rse.2010.11.010.
28 FUCHS H,MAGDON P,KLEINN C,et al. Estimating aboveground carbon in a catchment of the Siberian forest tundra:Combining satellite imagery and field inventory[J]. Remote Sens Environ,2009,113(3):518-531.DOI:10.1016/j.rse.2008.07.017.
29 CUTLER M E J,BOYD D S,FOODY G M,et al. Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data:an assessment of predictions between regions[J]. ISPRS J Photogramm Remote Sens,2012,70:66-77. DOI:10.1016/j.isprsjprs.2012.03.011.

基金

国家林业局“948”项目(2015-4-31)

PDF(880 KB)

Accesses

Citation

Detail

段落导航
相关文章

/