绿地格局对城市地表热环境调节作用的多尺度分析

周雯, 曹福亮, 张瑞, 汪贵斌

南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (3) : 133-141.

PDF(3627 KB)
PDF(3627 KB)
南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (3) : 133-141. DOI: 10.3969/j.issn.1000-2006.201811056
研究论文

绿地格局对城市地表热环境调节作用的多尺度分析

作者信息 +

Multi⁃scale analysis of the effects of green space pattern on the urban surface thermal environment

Author information +
文章历史 +

摘要

目的

城市绿化是协助城市应对气候变化、缓解城市热岛效应的有效途径,而分析影响绿地降温效应的因素及机制是合理改善城市绿化措施的理论基础。

方法

基于Landsat?8 TIRS热红外数据反演地表温度,并通过同期Spot 6遥感影像数据解译土地利用/覆盖类型并获取绿地信息,在此基础上结合景观指标和移动窗口法,从不同尺度分析城市绿地空间格局对地表温度的影响。

结果

在斑块水平上,斑块面积、形状以及相邻绿地面积对乔木林地斑块内部温度具有显著影响;与乔木林地不同,草地斑块的内部温度主要受斑块面积的影响,与二维形状复杂度无明显相关性。在不同地表中,水体降温效应最强,乔木林地次之,草地最弱。在类型水平上,增加乔木林地面积占比、加强边界复杂程度,以及提高林地斑块之间的聚集度,可以有效地降低区域温度;景观组分对降温强度的影响高于景观构型,结果显示每增加10 %的乔木林地覆盖面积,可以降低区域温度1.03 ℃。绿地景观格局与地表温度的相关性具有一定的尺度依赖性。

结论

开展绿地空间格局与降温强度的关系研究,有助于实现绿地的合理配置与前瞻性布局,能够为城市绿地规划以及可持续发展规划建设提供切实可行的参考依据。

Abstract

Objective

Urban greenspace can be an effective contributor to mitigation of the urban heat island (UHI) effect and adaption to urban climate change. Previous studies have confirmed that the relationship between urban green pattern and land surface temperature (LST) is sensitive to spatial resolution of applied remote sensing imagery; however, little is known about spatial extent, another scaling issue. This study examined the effects of greenspace pattern on urban cooling and the influence of spatial extent when applied to derive landscape metrics. Understanding how the spatial pattern of urban greenspace affects the cooling intensity at different spatial extents is essential for creating a more scientific urban green network to better counteract the UHI effect.

Method

The study applied Landsat?8 TIRS imagery to derive LST data and Spot 6 imagery to retrieve the land-use and land-cover (LULC) map. The spatial pattern of woodland was measured by landscape metrics over four spatial extents/scales (90 m × 90 m, 180 m × 180 m, 360 m × 360 m and 720 m × 720 m) using a moving-window approach based on the LULC map. The relationship between landscape metrics and LST was established using correlation analyses and regression analyses.

Result

At patch level, the size, shape and connectivity with neighboring greenspaces all affect the cooling intensity of woodland. Meanwhile, patch area (PA) is the main factor influencing the LST of grassland. An increase in size and shape complexity can effectively reduce the LST within the greenspace. Compared with different LULC types, water performs best in urban cooling, followed by woodland and grassland, respectively. At class level, areas with a higher percentage of woodland cover experience a greater cooling effect, and a 10% increase of woodland resulted in a decrease in LST of 1.03 ℃. When given a fixed amount of woodland cover, aggregated distribution provides a stronger cooling effect than relative fragmented distribution. This study has suggested that landscape composition is more important than spatial configuration in determining the magnitude of LST. Moreover, results also demonstrated that changing spatial extent had significant impacts on the relationship between spatial pattern of urban greenspace and LST. Specifically, the significance of correlation between percentage of landscape (PLAND), mean patch size (MPS), largest patch index (LPI), and LST decreased as the spatial extent increased, and increased as the spatial extent increased between number of patches (NP), aggregation index (AI) and LST. The relationship between mean patch shape index (Shape_MN) and LST is not as sensitive as other landscape metrics to spatial extent. The findings in this study indicate that multi-scale analysis is required to fully explore the relationship between urban green pattern and LST.

Conclusion

Quantifying the relationship between spatial patterns of greenspaces and cooling intensity will provide a better prediction of the optimal pattern required to cool the urban environment, thus providing practical suggestions for urban greenspace planning and sustainable development.

关键词

城市绿地 / 多尺度分析 / 景观格局 / 降温效应 / 地表温度(LST)

Key words

urban greenspace / multi-scale analysis / landscape pattern / cooling effect / land surface temperature (LST)

引用本文

导出引用
周雯, 曹福亮, 张瑞, 汪贵斌. 绿地格局对城市地表热环境调节作用的多尺度分析[J]. 南京林业大学学报(自然科学版). 2020, 44(3): 133-141 https://doi.org/10.3969/j.issn.1000-2006.201811056
ZHOU Wen, CAO Fuliang, ZHANG Rui, WANG Guibin. Multi⁃scale analysis of the effects of green space pattern on the urban surface thermal environment[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2020, 44(3): 133-141 https://doi.org/10.3969/j.issn.1000-2006.201811056
中图分类号: S731.2   

参考文献

1 WARD K,LAUF S,KLEINSCHMIT B,et al.Heat waves and urban heat islands in Europe:a review of relevant drivers[J].Sci Total Environ,2016(569/570):527-539.DOI:10.1016/j.scitotenv.2016.06.119.
2 KERAMITSOGLOU I,KIRANOUDIS C T,CERIOLA G,et al.Identification and analysis of urban surface temperature patterns in Greater Athens,Greece,using MODIS imagery[J]. Remote Sens Environ,2011,115(12):3080-3090. DOI:10.1016/j.rse.2011.06.014.
3 GEORGI J N,DIMITRIOU D. The contribution of urban green spaces to the improvement of environment in cities:case study of Chania,Greece[J]. Build Environ,2010,45(6):1401-1414.DOI:10.1016/j.buildenv.2009.12.003.
4 HAMADA S,OHTA T. Seasonal variations in the cooling effect of urban green areas on surrounding urban areas[J]. Urban For Urban Green,2010,9(1):15-24. DOI:10.1016/j.ufug. 2009.10.002.
5 LI J X,SONG C H,CAO L,et al. Impacts of landscape structure on surface urban heat islands:a case study of Shanghai,China[J]. Remote Sens Environ,2011,115(12):3249-3263.DOI:10.1016/j.rse.2011.07.008.
6 孔繁花,尹海伟,刘金勇,等. 城市绿地降温效应研究进展与展望[J]. 自然资源学报,2013,28(1):171-181.
6 KONG F H,YIN H W,LIU J Y,et al. A review of research on the urban green space cooling effect[J]. J Nat Resour,2013,28(1):171-181.
7 WENG Q H. Thermal infrared remote sensing for urban climate and environmental studies:methods,applications,and trends[J]. ISPRS J Photogramm Remote Sens,2009,64(4):335-344.DOI:10.1016/j.isprsjprs.2009.03.007.
8 CAO X,ONISHI A,CHEN J,et al.Quantifying the cool island intensity of urban parks using Aster and IKONOS data[J].Landsc Urban Plan,2010,96(4):224-231.DOI:10.1016/j.landurbplan.2010.03.008.
9 ZHOU W Q,HUANG G L,CADENASSO M L. Does spatial configuration matter??Understanding the effects of land cover pattern on land surface temperature in urban landscapes[J].Landsc Urban Plan,2011,102(1):54-63.DOI:10.1016/j.landurbplan.2011.03.009.
10 熊春妮,魏虹,兰明娟. 重庆市主城区城市景观动态的多尺度分析[J]. 西南大学学报(自然科学版),2008,30(5):128-134.
10 XIONG C N,WEI H,LAN M J. Multi?scale analysis of the dynamics of urban landscape in the downtown area of Chongqing[J]. J Southwest Univ (Nat Sci Ed),2008,30(5):128-134.DOI:10.13718/j.cnki.xdzk.2008.05.016.
11 邬建国.景观生态学:概念与理论[J]. 生态学杂志,2000,19(1):42-52.
11 WU J G. Landscape ecology?concepts and theories[J]. Chin J Ecol,2000,19(1):42-52.DOI:10.13292/j.1000-4890.2000.0008.
12 WENG Q H,LU D S,SCHUBRING J.Estimation of land surface temperature???vegetation abundance relationship for urban heat island studies[J]. Remote Sens Environ,2004,89(4):467-483.DOI:10.1016/j.rse.2003.11.005.
13 VANNIER C,VASSEUR C,HUBERT?MOY L,et al. Multiscale ecological assessment of remote sensing images[J]. Landscape Ecol,2011,26(8):1053-1069. DOI:10.1007/s10980-011-9626-y.
14 TOWNSEND P A,LOOKINGBILL T R,KINGDON C C,et al.Spatial pattern analysis for monitoring protected areas[J]. Remote Sens Environ,2009,113(7):1410-1420.DOI:10.1016/j.rse.2008.05.023.
15 LI X M,ZHOU W Q,OUYANG Z Y. Relationship between land surface temperature and spatial pattern of greenspace:what are the effects of spatial resolution?[J]. Landsc Urban Plan,2013,114:1-8.DOI:10.1016/j.landurbplan.2013.02.005.
16 QIU T,SONG C H,LI J X. Impacts of urbanization on vegetation phenology over the past three decades in Shanghai,China[J]. Remote Sens,2017,9(9):970.DOI:10.3390/rs9090970.
17 LI J J,WANG X R,WANG X J,et al. Remote sensing evaluation of urban heat island and its spatial pattern of the Shanghai metropolitan area,China[J].Ecol Complex,2009,6(4):413-420.DOI:10.1016/j.ecocom.2009.02.002.
18 邬建国. 景观生态学——格局、过程、尺度与等级 [M].2版. 北京:高等教育出版社,2007:106. WU J G. Landscape ecology: pattern, process, scale and hierarchy [M]. 2nd ed. Beijing: Higher Education Press, 2007: 106.
19 QIN Z,KARNIELI A,BERLINER P. A mono?window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel?Egypt border region[J]. Int J Remote Sens,2001,22(18):3719-3746.DOI:10.1080/01431160010006971.
20 陈利顶,刘洋,吕一河,等. 景观生态学中的格局分析:现状、困境与未来[J]. 生态学报,2008,28(11):5521-5531.
20 CHEN L D,LIU Y,Lü Y H,et al.Landscape pattern analysis in landscape ecology:current,challenges and future[J]. Acta Ecol Sin,2008,28(11):5521-5531.DOI:10.3321/j.issn:1000-0933.2008.11.037.
21 CHEN A L,YAO X A,SUN R H,et al. Effect of urban green patterns on surface urban cool islands and its seasonal variations[J]. Urban For Urban Green,2014,13(4):646-654.DOI:10.1016/j.ufug.2014.07.006.
22 MCGARIGAL K,MARKS B J. FRAGSTATS:spatial pattern analysis program for quantifying landscape structure[R]. U S Department of Agriculture,Forest Service,Pacific Northwest Research Station,1995.DOI:10.2737/pnw-gtr-351.
23 KONG F H,YIN H W,JAMES P,et al. Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of Eastern China[J]. Landsc Urban Plan,2014,128:35-47.DOI:10.1016/j.landurbplan.2014.04.018.
24 王彦超,朱一丹,徐丹丹. 基于Landsat8影像的南京市热岛效应对植物物候的影响[J]. 南京林业大学学报(自然科学版),2018,42(6):99-105.
24 WANG Y C,ZHU Y D,XU D D.The impact of urban heat island of Landsat 8 OLI on plant phenology in Nanjing[J]. J Nanjing For Univ (Nat Sci Ed), 2018,42(6):99-105.DOI:10.3969/j.issn.1000-2006.201710024.
25 武文昊,王新杰,黄瑞芬. 基于遥感数据的常州市热岛效应分析[J]. 南京林业大学学报(自然科学版),2017,41(5):185-190.
25 WU W H,WANG X J,HUANG R F.Study on urban heat islands in Changzhou City based on remote sensing data[J]. J Nanjing For Univ (Nat Sci Ed),2017,41(5):185-190.DOI:10.3969/j.issn.1000-2006.201607005.
26 薛申亮,刘滨谊.上海市苏州河滨水带不同类型绿地和非绿地夏季小气候因子及人体热舒适度分析[J].植物资源与环境学报,2018,27(2):108-116.
26 XUE S L, LIU B Y.Analyses on microclimatic factors and human thermal comfort of different types of greenbelt and non?greenbelt in riparian zone of Suzhou River in Shanghai City in summer[J]. Journal of Plant Resources and Environment,2018,27(2):108-116.DOI: 10.3969/j.issn.1674-7895.2018.02.14.
27 BOWLER D E,BUYUNG?ALI L,KNIGHT T M,et al. Urban greening to cool towns and cities:a systematic review of the empirical evidence[J]. Landsc Urban Plan,2010,97(3):147-155. DOI:10.1016/j.landurbplan.2010.05.006.
28 KUANG W H,DOU Y Y,ZHANG C,et al. Quantifying the heat flux regulation of metropolitan land use/land cover components by coupling remote sensing modeling with in situ measurement[J]. J Geophys Res Atmos,2015,120(1):113-130.DOI:10.1002/2014jd022249.
29 彭保发,石忆邵,王贺封,等. 城市热岛效应的影响机理及其作用规律:以上海市为例[J]. 地理学报,2013,68(11):1461-1471.
29 PENG B F,SHI Y S,WANG H F,et al. The impacting mechanism and laws of function of urban heat islands effect:a case study of Shanghai[J]. Acta Geogr Sin,2013,68(11):1461-1471. DOI:10.11821/dlxb201311002.
30 刘越,SHINTARO GOTO,庄大方,等. 城市地表热通量遥感反演及与下垫面关系分析[J]. 地理学报,2012,67(1):101-112.
30 LIU Y,GOTO S,ZHUANG D F,et al. Urban surface heat flux inversion based on infrared remote sensing and the relationship with land cover[J]. Acta Geogr Sin,2012,67(1):101-112.
31 GUSTAFSON E J. Minireview:quantifying landscape spatial pattern:what is the state of the art?[J]. Ecosystems,1998,1(2):143-156. DOI:10.1007/s100219900011.
32 TURNER M G. Landscape ecology:what is the state of the science?[J]. Annu Rev Ecol Evol Syst,2005,36(1):319-344.DOI:10.1146/annurev.ecolsys.36.102003.152614.
33 WU J G. Effects of changing scale on landscape pattern analysis:scaling relations[J]. Landsc Ecol,2004,19(2):125-138.DOI:10.1023/b:land.0000021711.40074.ae.

基金

国家重点研发计划(2017YFD0600701)

PDF(3627 KB)

Accesses

Citation

Detail

段落导航
相关文章

/