[1] |
BLEECKER A B, KENDE H. Ethylene: a gaseous signal molecule in plants[J]. Annual Review of Cell and Developmental Biology, 2000, 16(1):1-18. DOI: 10.1146/annurev.cellbio.16.1.1.
doi: 10.1146/annurev.cellbio.16.1.1
|
[2] |
CAO W H, LIU J, HE X J, et al. Modulation of ethylene responses affects plant salt-stress responses[J]. Plant Physiol, 2007, 143(2):707-719. DOI: 10.1104/pp.106.094292.
doi: 10.1104/pp.106.094292
|
[3] |
VAHALA J, RUONALA R, KEINÄNEN M, et al. Ethylene insensitivity modulates ozone-induced cell death in birch[J]. Plant Physiol, 2003, 132(1):185-195. DOI: 10.1104/pp.102.018887.
doi: 10.1104/pp.102.018887
|
[4] |
WANG H H, LIANG X L, WAN Q, et al. Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress[J]. Planta, 2009, 230(2):293-307. DOI: 10.1007/s00425-009-0946-y.
doi: 10.1007/s00425-009-0946-y
|
[5] |
PEISER G D, WANG T T, HOFFMAN N E, et al. Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(10) 3059-3063. DOI: 10.1073/pnas.81.10.3059.
|
[6] |
SIEGIEN I, BOGATEK R. Cyanide action in plants-from toxic to regulatory[J]. Acta Physiolo Plant, 2006, 28(5):483-497. DOI: 10.1007/bf02706632.
|
[7] |
ÁLVAREZ C, GARCIA I, ROMERO L C, et al. Mitochondrial sulfide detoxification requires a functional isoform O-acetylserine(thiol)lyase C in Arabidopsis thaliana[J]. Molecular Plant, 2012, 5(6):1217-1226. DOI: 10.1093/mp/sss043.
doi: 10.1093/mp/sss043
|
[8] |
PIOTROWSKI M. Primary or secondary? Versatile nitrilases in plant metabolism[J]. Phytochemistry, 2008, 69(15):2655-2667. DOI: 10.1016/j.phytochem.2008.08.020.
doi: 10.1016/j.phytochem.2008.08.020
|
[9] |
HATZFELD Y, MARUYAMA A, SCHMIDT A, et al. beta-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis[J]. Plant Physiol, 2000, 123(3):1163-1172. DOI: 10.1104/pp.123.3.1163.
doi: 10.1104/pp.123.3.1163
|
[10] |
WATANABE M, KUSANO M, OIKAWA A, et al. Physiological roles of the β-substituted alanine synthase gene family in Arabidopsis[J]. Plant Physiol, 2008, 146(1):310-320. DOI: 10.1104/pp.107.106831.
doi: 10.1104/pp.107.106831
|
[11] |
余璐璐, 曹中权, 刘龙山, 等. 盐芥CAS基因的生物信息学分析及在盐胁迫下的表达[J]. 江苏农业科学, 2015, 43(7):25-29. DOI: 10.15889/j.issn.1002-1302,2015,07,007.43.
|
[12] |
DA SILVA C J, BATISTA FONTES E P, MODOLO L V. Salinity-induced accumulation of endogenous H2S and NO is associated with modulation of the antioxidant and redox defense systems in Nicotiana tabacum L. cv. Havana[J]. Plant Science, 2017, 256:148-159. DOI: 10.1016/j.plantsci.2016.12.011.
doi: 10.1016/j.plantsci.2016.12.011
|
[13] |
GARCÍA I, ROSAS T, BEJARANO E R, et al. Transient transcriptional regulation of the CYS-C1 gene and cyanide accumulation upon pathogen infection in the plant immune response[J]. Plant Physiol, 2013, 162(4):2015-2027. DOI: 10.1104/pp.113.219436.
doi: 10.1104/pp.113.219436
|
[14] |
CHIVASA S, CARR J P. Cyanide restores N gene-mediated resistance to tobacco mosaic virus in transgenic tobacco expressing salicylic acid hydroxylase[J]. Plant Cell, 1998, 10(9):1489-1498. DOI: 10.1105/tpc.10.9.1489.
|
[15] |
CHIVASA S, MURPHY A M, NAYLOR M, et al. Salicylic acid interferes with tobacco mosaic virus replication via a novel salicylhydroxamic acid-sensitive mechanism[J]. Plant Cell, 1997, 9(4):547-557. DOI: 10.1105tpc.9.4.547.
doi: 10.2307/3870506
|
[16] |
WANG H H, LIANG X L, HUANG J J, et al. Involvement of ethylene and hydrogen peroxide in induction of alternative respiratory pathway in salt-treated Arabidopsis calluses[J]. Plant and Cell Physiol, 2010, 51(10):1754-1765. DOI: 10.1093/pcp/pcq134.
doi: 10.1093/pcp/pcq134
|
[17] |
JANSSON S, DOUGLAS C J. Populus: A model system for plant biology[J]. Annual Review of Plant Biology, 2007, 58(1):435-458. DOI: 10.1146/annurev.arplant.58.032806.103956.
doi: 10.1146/annurev.arplant.58.032806.103956
|
[18] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔct Tmethod[J]. Methods, 2001, 25(4):402-408. DOI: 10.1006/meth.2001.1262.
doi: 10.1006/meth.2001.1262
|
[19] |
LIZADA M C, YANG S F. A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid[J]. Analytical Biochemistry, 1979, 100(1):140-145. DOI: 10.1016/0003-2697(79)90123-4.
doi: 10.1016/0003-2697(79)90123-4
|
[20] |
GAITONDE M K. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids[J]. The Biochem J, 1967, 104(2):627-633. DOI: 10.1042/bj1040627.
doi: 10.1042/bj1040627
|
[21] |
TAKÁCS Z, POÓR P, TARI I. Comparison of polyamine metabolism in tomato plants exposed to different concentrations of salicylic acid under light or dark conditions[J]. Plant Physiol Biochem, 2016, 108:266-278. DOI: 10.1016/j.plaphy.2016.07.020.
doi: 10.1016/j.plaphy.2016.07.020
|
[22] |
KHAN M M, ISLAM E, IREM S, et al. Pb-induced phytotoxicity in para grass (Brachiaria mutica) and Castorbean (Ricinus communis L.): antioxidant and ultrastructural studies[J]. Chemosphere, 2018, 200:257-265. DOI: 10.1016/j.chemosphere.2018.02.101.
doi: 10.1016/j.chemosphere.2018.02.101
|
[23] |
WANG H H, HUANG J J, BI Y R. Induction of alternative respiratory pathway involves nitric oxide, hydrogen peroxide and ethylene under salt stress[J]. Plant Signaling &Behavior, 2010, 5(12):1636-1637. DOI: 10.4161/psb.5.12.13775.
|
[24] |
ZHU L, LI Y M, LI L, et al. Ethylene is involved in leafy mustard systemic resistance to Turnip mosaic virus infection through the mitochondrial alternative oxidase pathway[J]. Physiol Mol Plant Pathol, 2011, 76(3/4):166-172. DOI: 10.1016/j.pmpp.2011.09.005.
doi: 10.1016/j.pmpp.2011.09.005
|
[25] |
LI Z G. Analysis of some enzymes activities of hydrogen sulfide metabolism in plants[M]//CADENAS E, PACKER L. Hydrogen sulfide in redox biology. Pt B. San Diego: Elsevier Academic Press Inc, 2015: 253-269. DOI: 10.1016/bs.mie.2014.11.035.
|
[26] |
GARCÍA I, CASTELLANO J M, VIOQUE B, et al. Mitochondrial β-cyanoalanine synthase is essential for root hair formation in Arabidopsis thaliana[J]. Plant Cell, 2010, 22(10):3268-3279. DOI: 10.1105/tpc.110.076828.
doi: 10.1105/tpc.110.076828
|
[27] |
MØLLER I M. Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species[J]. Ann Rev Plant Physiol Plant & MolBiol, 2001, 52(1):561-591. DOI: 10.1146/annurev.arplant.52.1.561.
|
[28] |
WAGNER A M, MOORE A L. Structure and function of the plant alternative oxidase: its putative role in the oxygen defence mechanism[J]. Bioscience Reports, 1997, 17(3):319-333. DOI: 10.1023/a:1027388729586.
doi: 10.1023/A:1027388729586
|