硒对茶树镉毒害的缓解作用研究

张庆, 魏树和, 代惠萍, 贾根良

南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (1) : 200-204.

PDF(1383 KB)
PDF(1383 KB)
南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (1) : 200-204. DOI: 10.3969/j.issn.1000-2006.201902006
研究论文

硒对茶树镉毒害的缓解作用研究

作者信息 +

The alleviating effects of selenium on cadmium-induced toxicity in tea leaves

Author information +
文章历史 +

摘要

【目的】通过溶液培养试验,探讨硒(Se)对镉(Cd)胁迫下茶树生长和生理特性的影响,为保障茶叶饮用安全和综合开发利用提供参考。【方法】以种植于陕西汉中地区的‘龙井43’茶树为试验材料,采用营养液培养方法,分别进行镉和硒处理试验,包括7个处理,分别为Cd 10 mg/L、Se 0.5 mg/L、Se 1.5 mg/L、Se 3.0 mg/L、Se 0.5 mg/L+Cd 10.0 mg/L、Se 1.5 mg/L +Cd 10.0 mg/L、Se 3.0 mg/L +Cd 10.0 mg/L。测定了不同质量浓度硒处理缓解茶树叶片镉毒害的生理响应,以及茶树叶生物量,茶树叶硒和镉的含量。【结果】与未施加镉和硒的对照相比,单一施镉处理使得茶树叶片的光合色素含量、过氧化氢酶(CAT)、抗坏血酸过氧化物酸(APX)、谷胱甘肽过氧化物酶(GPX)活性,以及生物量和可溶性糖、可溶性蛋白含量受到明显抑制,而丙二醛(MDA)和过氧化氢(H2O2)含量、渗透调节物质脯胺酸含量明显增加。单一施硒处理条件下,与单一施镉处理对比,上述指标均不同程度得到显著改善,其中1.5 mg/L硒处理下茶树叶片的各项指标改善程度最高。与单一施镉处理相比,在镉和硒的复合处理下,随着硒含量提高,上述各项指标均不同程度得到改善,以Se 1.5 mg/L +Cd 10.0 mg/L复合处理下的各项指标改善程度最高。硒的施加有助于缓解茶树叶片镉的积累。【结论】施加适量的硒在一定程度上可以增加茶树叶片镉诱导产生的抗氧化酶CAT、APX和GPX活性,降低质膜过氧化产物MDA和H2O2含量积累,缓解镉对茶树叶片的毒害,并降低对镉的积累。

Abstract

【Objective】 We examined the effects of selenium (Se) on the growth and physiological characteristics of tea plants subjected to cadmium (Cd) based on a culture solution experiment, the findings of which will provide a theoretical basis for ensuring the safety of tea drinking and the comprehensive development and utilization of tea. 【Method】 As experimental material, we used ‘Longjing 43’tea trees leaves planted in the Hanzhong area of Shaanxi Province, China, which were exposed to the following seven combinations of Cd and Se in 1/2 Hoagland solution: 10 mg/L Cd, 0.5 mg/L Se, 1.5 mg/L Se, 3.0 mg/L Se, 0.5 mg/L Se + 10.0 mg/L Cd, 1.5 mg/L Se + 10.0 mg/L Cd, and 3.0 mg/L Se + 10.0 mg/L Cd. Following treatment, we determined the physiological responses associated with the alleviation of Cd toxicity in tea leaves treated with different concentrations of Se (0.5-3.0 mg/L), and measured the biomass of tea leaves, and the concentrations of Se and Cd in these leaves. 【Result】 Compared with the control treatment without either Cd or Se addition, the treatment with Cd alone promoted a significant decrease in the concentration of photosynthetic pigments, antioxidant enzymes [catalase (CAT), ascorbate peroxidase(APX) and glutathione peroxidase (GPX)], biomass, and the concentrations of soluble sugars and soluble protein in tea leaves, whereas the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2), and proline were significantly increased. In samples treated with Se alone, the above indices (e.g. biomass, and the concentrations of soluble sugars, soluble protein, and photosynthetic pigments, antioxidant enzymes activities in tea leaves) were significantly improved to differing extents compared with the Cd only treatment, particularly in response to treatment with 1.5 mg/L. In the combined Cd and Se treatments, we noted that the indices were improved to varying degrees in response to increases in Se concentration compared with the Cd only treatment, with the most pronounced improvement being obtained in response to the combined treatment of 1.5 mg/L Se + 10.0 mg/L Cd. The application of selenium reduced the accumulation of cadmium in tea leaves.【Conclusion】 To differing extents, the addition of an appropriate amount of Se can increase the activities of CAT, APX and GPX induced by Cd in tea leaves, reduce the accumulation of MDA and H2O2, and alleviate Cd toxicity.

关键词

茶树 / 镉胁迫 / / 茶叶品质 / 生理响应 / 生物量 / 汉中地区

Key words

tea / cadmium stress / selenium / tea leaf quality / physiological response / biomass / Hanzhong area of Shannxi Province

引用本文

导出引用
张庆, 魏树和, 代惠萍, . 硒对茶树镉毒害的缓解作用研究[J]. 南京林业大学学报(自然科学版). 2020, 44(1): 200-204 https://doi.org/10.3969/j.issn.1000-2006.201902006
ZHANG Qing, WEI Shuhe, DAI Huiping, et al. The alleviating effects of selenium on cadmium-induced toxicity in tea leaves[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2020, 44(1): 200-204 https://doi.org/10.3969/j.issn.1000-2006.201902006
中图分类号: Q945.78;S718   

参考文献

[1]
LU Y F, YANG H M, MA L Y, et al. Application of Pb isotopic tracing technique to constraining the source of Pb in the West Lake Longjing tea[J]. Chinese Journal of Geochemistry, 2011, 30(4):554-562. DOI: 10.1007/s11631-011-0539-x.
[2]
魏树和, 徐雷, 韩冉, 等. 重金属污染土壤的电动-植物联合修复技术研究进展[J]. 南京林业大学学报(自然科学版), 2019, 43(1):154-160.
WEI S H, XU L, HAN R, et al. Review on combined electrokinetic and phytoremediation technology for soil contaminated by heavy metal[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2019, 43(1):154-160. DOI: 10.3969/j.issn.1000-2006.201807011.
[3]
李正文, 张艳玲, 潘根兴, 等. 不同水稻品种籽粒Cd、Cu和Se的含量差异及其人类膳食摄取风险[J]. 环境科学, 2003, 24(3):112-115.
LI Z W, ZHANG Y L, PAN G X, et al. Grain contents of Cd, Cu and Se by 57 rice cultivars and the risk significance for human dietary uptake[J]. Chinese Journal of Environmental Science, 2003, 24(3):112-115. DOI: 10.13227/j.hjkx.2003.03.022.
[4]
LU H P, LIN Z, TAN J F, et al. Contents of fluoride, lead, copper, chromium, arsenic and cadmium in Chinese Pu-erh tea[J]. Food Research International, 2013, 53(2):938-944. DOI: 10.1016/j.foodres.2012.06.014.
[5]
WU Z C, WANG F H, LIU S, et al. Comparative responses to silicon and selenium in relation to cadmium uptake, compartmentation in roots, and xylem transport in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress[J]. Environmental and Experimental Botany, 2016, 131:173-180. DOI: 10.1016/j.envexpbot.2016.07.012.
[6]
DING Y, WANG R, GUO J, et al. The effect of selenium on the subcellular distribution of antimony to regulate the toxicity of antimony in paddy rice[J]. Environmental Science and Pollution Research, 2015, 22:5111-5123. DOI: 10.1007/s11356-014-3865-9.
[7]
CHENERYE M. A preliminary study of aluminum in the tea bush[J]. Plant and Soil, 1955, 6(2):174-200. DOI: 10.1007/BF01343446.
[8]
DAI H P, JIA G L. Effects of Se on the growth, tolerance, and antioxidative systems of three alfalfa cultivars[J]. Environmental Science and Pollution Research, 2017, 24(28):15196-15201.DOI: 10.1007/s11356-017-9137-8.
[9]
WEI S H, TWARDOWSKA I. Main rhizosphere characteristics of the Cd hyperaccumulator Rorippa globosa (Turcz.) Thell[J]. Plant and Soil, 2013, 372:669-681.DOI: 10.1007/s11104-013-1783-0.
[10]
DAI H P, SHAN C J, ZHAO H, et al. The difference in antioxidant capacity of four alfalfa cultivars in response to Zn[J]. Ecotoxicology and Environmental Safety, 2015, 114:312-317. DOI: 10.1016/j.ecoenv.2014.04.044.
[11]
GOSWAMI S, DAS S. Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance[J]. Ecotoxicology and Environmental Safety, 2016, 126:211-218. DOI: 10.1016/j.ecoenv.2015.12.030.
[12]
FILEK M, KOSCIELNIAK J, LABANOWSKA M, et al. Selenium-induced protection of photosynjournal activity in rape (Brassica napus) seedlings subjected to cadmium stress. fluorescence and EPR measurements[J]. Photosynjournal Research, 2010, 105(1):27-37. DOI: 10.1007/s11120-010-9551-y.
[13]
FENG R W, WEI C Y, TU S X, et al. The roles of selenium in protecting plants against abiotic stresses[J]. Environmental and Experimental Botany, 2013, 87:58-68. DOI: 10.1016/j.envexpbot.2012.09.002.
[14]
LI Y, ZHANG X L, YANG Y Q, et al. Soil cadmium toxicity and nitrogen deposition differently affect growth and physiology in Toxicodendron vernicifluum seedlings[J]. Acta Physiologiae Plantarum, 2013, 35(2) :529-540. DOI: 10.1007/s11738-012-1094-8.
[15]
LIN L, ZHOU W H, DAI H X, et al. Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice[J]. Journal of Hazardous Materials, 2012,235-236;343-351.DOI: 10.1016/j.jhazmat.2012.08.012.
[16]
FILEK M, KESKINEN R, HARTIKAINEN H, et al. The protective role of selenium in rape seedlings subjected to cadmium stress[J]. Journal of Plant Physiology, 2008, 165(8):833-844. DOI: 10.1016/j.jplph.2007.06.006.
[17]
QING X J, ZHAO X H, HU C X, et al. Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L.ssp.pekinensis) leaves[J]. Ecotoxicology and Environmental Safety, 2015, 114:179-189. DOI: 10.1016/j.ecoenv.2015.01.026.
[18]
HE J Y, REN Y F, ZHU C, et al. Effect of Cd on growth, photosynthetic gas exchange and chlorophyll fluorescence of wild and Cd-sensitive mutant rice[J]. Photosynthetica, 2008, 46(3):466-470. DOI: 10.1007/s11099-008-0080-2.
[19]
CHAO Y, HONG C, KAO C. The decline in ascorbic acid content is associated with cadmium toxicity of rice seedings[J]. Plant Physiology and Biochemistry, 2010, 48:374-381.DOI: 10.1016/j.plaphy.2010.01.009.
[20]
孙红艳, 李文斌, 王小云, 等. 硒对大麦镉毒害的缓解效应研究[J]. 广东农业科学, 2014, 16:9-13.
SUN H Y, LI W B, WANG X Y. et al. Mitigative effect of selenium on the cadmium toxicity in barley[J]. Guangdong Agricultural Sciences, 2014, 16:9-13. DOI: 10.3969/j.issn.1004-874X.2014.16.003.
[21]
郭锋, 樊文华. 外源硒对镉胁迫下芥菜种子萌发生理效应的影响[J]. 华北农学报, 2013, 28(4) :130-133.
GUO F, FAN W H. Effects of exogenous selenium on physiological effects of germination of mustard seeds under Cd stress[J]. Acta Agriculturae Boreali-Sinica, 2013, 28(4) :130-133. DOI: 10.3969/j.issn.1000-7091.2013.04.024.

基金

国家自然科学基金项目(41571300)
国家自然科学基金项目(31870488)
国家高端外国专家项目(GDT20186100430B)
陕西省自然科学基金项目(2019JM-413)
陕西省教育厅重点实验室科研计划项目(17JS023)
陕西省科技厅后补助项目(2018SZS-27-07)

编辑: 王国栋

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1383 KB)

Accesses

Citation

Detail

段落导航
相关文章

/