南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (2): 98-104.doi: 10.3969/j.issn.1000-2006.201902016
收稿日期:
2019-02-20
修回日期:
2019-12-28
出版日期:
2020-03-30
发布日期:
2020-04-01
通讯作者:
包怡红
基金资助:
LIU Wenli1(), BAO Yihong1,2,*(
)
Received:
2019-02-20
Revised:
2019-12-28
Online:
2020-03-30
Published:
2020-04-01
Contact:
BAO Yihong
摘要:
【目的】研究3种松针精油对供试菌的协同抑菌效应和机制,利用松针精油天然抑菌物质抑制微生物的生长特性,为将松针精油应用于食品、化妆品等领域提供理论依据。【方法】通过微量二倍稀释法测定黑皮油松松针精油(PTEO)、樟子松松针精油(PSEO)、红松松针精油(PKEO)对大肠杆菌(Escherichia coli)、金黄色葡萄球菌(Staphylococcus aureus)、枯草芽孢杆菌(Bacillus subtilis)的抑菌效果,通过棋盘稀释法来测定其协同效果及最佳复配比,以最佳精油复配比研究其对3种供试菌的抑菌机理。【结果】3种精油单独作用时均表现出对3种供试菌较好的抑菌效果,部分复配后效果得到明显提高,针对不同微生物复配最佳抑菌配方为:E.coli用抑菌精油为PTEO和PSEO,浓度均为0.31 μL/mL; S. aureus用抑菌精油为PKEO和PTEO,浓度均为0.16 μL/mL; B. subtilis用抑菌精油为PKEO和PSEO,浓度分别为0.16、0.08 μL/mL。通过复配精油对3种供试菌的抑菌机理研究发现复配精油能够破坏菌体的正常形态,破坏细胞膜的渗透性,导致核酸等大分子物质的泄露,并且对细胞菌体蛋白的合成和积累有干扰作用。【结论】3种精油复配后表现出更好的抑菌作用,精油之间的协同作用可以减少到抑菌效果时精油的用量。
中图分类号:
刘文丽,包怡红. 松针精油的协同抑菌效应及机制[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 98-104.
LIU Wenli, BAO Yihong. Synergistic antimicrobial effect and mechanism of pine needle essential oil[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(2): 98-104.DOI: 10.3969/j.issn.1000-2006.201902016.
表2
松针精油联合作用时对3种供试菌的FICI"
菌种 strain | 处理 treatment | PTEO-PSEO | PKEO-PSEO | PKEO-PTEO | |||
---|---|---|---|---|---|---|---|
PTEO | PSEO | PKEO | PSEO | PKEO | PTEO | ||
大肠杆菌 E. coli | MIC单独 | 2.50 | 0.63 | 2.50 | 0.63 | 2.50 | 2.5 |
MIC混合 | 0.31 | 0.31 | 2.5 | 0.08 | 1.25 | 1.25 | |
FIC | 0.13 | 0.50 | 1.0 | 0.13 | 0.50 | 0.50 | |
FICI | 0.63 | 1.13 | 1 | ||||
金黄色葡萄球菌 S. aureus | MIC单独 | 0.63 | 0.31 | 1.25 | 0.31 | 1.25 | 0.63 |
MIC混合 | 0.31 | 0.08 | 0.16 | 0.16 | 0.16 | 0.16 | |
FIC | 0.50 | 0.25 | 0.13 | 0.50 | 0.13 | 0.25 | |
FICI | 0.75 | 0.63 | 0.38 | ||||
枯草芽孢杆菌 B. subtilis | MIC单独 | 0.31 | 0.16 | 1.25 | 0.16 | 1.25 | 0.31 |
MIC混合 | 0.04 | 0.16 | 0.16 | 0.08 | 0.63 | 0.08 | |
FIC | 0.13 | 1.00 | 0.13 | 0.50 | 0.50 | 0.25 | |
FICI | 1.13 | 0.63 | 0.75 |
[1] |
BURT S. Essential oils: their antibacterial properties and potential applicationsin foods: a review[J]. International Journal of Food Microbiology, 2004, 94(3):223-253. DOI: 10.1016/j.ijfoodmicro.2004.03.022.
doi: 10.1016/j.ijfoodmicro.2004.03.022 |
[2] |
BASSOLÉ I H N, JULIANI H R. Essential oils in combination and their antimicrobial properties[J]. Molecules, 2012, 17(4):3989-4006. DOI: 10.3390/molecules17043989.
doi: 10.3390/molecules17043989 |
[3] | 叶建仁, 尚征贤, 薛建明. 湿地松针叶中挥发油的化学组成[J]. 南京林业大学学报, 1994,18(2):60-64. |
YE J R, SHANG Z X, XUE J M. Chemical composition of volatile oil in needle of slash pine[J]. Journal of Nanjing Forestry University, 1994,18(2):60-64. DOI: 10.3969/j.issn.1000-2006.1994.02.011. | |
[4] | 王得道. 水蒸气法提取八种松科植物松针挥发油的研究及GC/MS分析[D]. 长春: 吉林农业大学, 2013. |
WANG D D. Studies on extraction of the essential on from eight Pinaceae plants pine needle by steam method and GC/MS analysis[D]. Changchun: Jilin Agricultural University, 2013. | |
[5] | 程满环, 翟大才, 毕淑峰. 黄山松与马尾松松针挥发性成分对比分析[J]. 南京林业大学学报(自然科学版), 2018,42(3):93-98. |
CHENG M H, ZHAI D C, BI S F. Contrastive analysis of volatile components from the pine needles of Pinus taiwanensis and P. massoniana [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2018,42(3):93-98. DOI: 10.3969/j.issn.1000-2006.201709022. | |
[6] | 胡文杰, 罗辉, 邹林海, 等. 雪松松针挥发油化学成分及抗氧化活性研究[J]. 植物研究, 2017,37(4):621-627. |
HU W J, LUO H, ZOU L H, et al. Study on chemical composition and antioxidant activity of essential oil from cedar needles[J]. Bulletin of Botanical Research, 2017,37(4):621-627. DOI: 10.7525/j.issn.1673-5102.2017.04.019. | |
[7] | 魏凤香, 李美玉, 宋宇宏, 等. 松针油诱导肝癌HepG2细胞凋亡及对端粒酶活性的影响[J]. 中药材, 2008,32(8):1197-1200. |
WEI F X, LI M, SONG Y H, et al. Apoptosis and activity changes of telomerase induced by essential oil from pine needles in HepG2 cell line[J]. Journal of Chinese Medicinal Materials, 2008,32(8):1197-1200. DOI: 10.3321/j.issn:1001-4454.2008.08.031. | |
[8] |
CHEN W Q, XU B, MAO J W, et al. Inhibitory effects of α-pinene on hepatoma carcinoma cell proliferation[J]. Asian Pac J Cancer Prev, 2014, 15(7):3293-3297. DOI: 10.7314/apjcp.2014.15.7.3293.
doi: 10.7314/APJCP.2014.15.7.3293 |
[9] | KARAPANDZOVA M, STEFKOV G, CVETKOVIKJ I, et al. Chemical composition and antimicrobial activity of the essential oils of Pinus peuce (Pinaceae) growing wild in R. Macedonia[J]. Natural Product Communications, 2014, 9(11): 1934578X1400901. DOI: 10.1177/1934578x1400901124. |
[10] |
JOO H E, LEE H J, SOHN E J, et al. Anti-diabetic potential of the essential oil of Pinus koraiensis leaves toward streptozotocin-treated mice and HIT-T15 pancreatic β cells[J]. Bioscience Biotechnology and Biochemistry, 2013, 77(10):1997-2001. DOI: 10.1271/bbb.130254.
doi: 10.1271/bbb.130254 |
[11] |
TUMEN I, AKKOL E K, TASTAN H, et al. Research on the antioxidant, wound healing, and anti-inflammatory activities and the phytochemical composition of maritime pine (Pinus pinaster Ait)[J]. Journal of Ethnopharmacology, 2018, 211:235-246. DOI: 10.1016/j.jep.2017.09.009.
doi: 10.1016/j.jep.2017.09.009 |
[12] | 杨书珍, 蒋丹丹, 范刚, 等. 松针提取物对柑橘青霉病菌的抑制作用及活性成分分析[J]. 现代食品科技, 2016,32(1):65-69. |
YANG S Z, JIANG D D, FAN G, et al. Analysis of the antifungal activity of pine needle extracts and their active components against Citrus blue mold [J]. Modern Food Science & Technology, 2016,32(1):65-69. DOI: 10.13982/j.mfst.1673-9078.2016.1.010. | |
[13] | 向芷璇. 柑橘的有机保鲜: 马尾松针叶对柑橘果实抑菌保鲜作用[J]. 食品安全导刊, 2016(36):127-128. |
XIANG Z X. Organic preservation of citrus-antibacterial and fresh-keeping effect of Pinus massoniana needles on citrus fruits [J]. China Food Safety Magazine, 2016, (36):127-128. DOI: 10.3969/j.issn.1674-0270.2016.36.096. | |
[14] | 张全景, 冯小海, 徐虹, 等. ε-聚赖氨酸在冷鲜猪肉保鲜中的应用[J]. 食品科学, 2011,32(2):290-296. |
ZHANG Q J, FENG X H, XU H, et al. Application of ε-polylysine to keep chilled pork fresh[J]. Food Science, 2011,32(2):290-296. | |
[15] |
FADIL M, FIKRI-BENBRAHIM K, RACHIQ S, et al. Combined treatment of, Thymus vulgaris, L. Rosmarinus officinalis, L. and, Myrtus communis, L. essential oils against, Salmonella typhimurium: optimization of antibacterial activity by mixture design methodology[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 126; 211-220. DOI: 10.1016/j.ejpb.2017.06.002.
doi: 10.1016/j.ejpb.2017.06.002 |
[16] |
KASRATI A, ALAOUI JAMALI C, FADLI M, et al. Antioxidative activity and synergistic effect of Thymus saturejoides Coss. essential oils with cefixime against selected food-borne bacteria[J]. Industrial Crops and Products, 2014, 61:338-344. DOI: 10.1016/j.indcrop.2014.07.024.
doi: 10.1016/j.indcrop.2014.07.024 |
[17] | 包怡红, 刘文丽. 黑皮油松松针精油的超声波辅助-盐析-水蒸气蒸馏法提取及其抑菌效果和稳定性[J]. 东北林业大学学报, 2018,46(10):54-58. |
BAO Y H, LIU W L. Extraction of Pinus tabulaeformis needles essential oils by ultrasoni-assisted salting-out hydrodistillation and its antibacterial effect and stability [J]. Journal of Northeast Forestry University, 2018,46(10):54-58. DOI: 10.3969/j.issn.1000-5382.2018.10.011. | |
[18] | CLEMENTE I, AZNAR M, SILVA F, et al. Antimicrobial properties and mode of action of mustard and cinnamon essential oils and their combination against foodborne bacteria[J]. Innovative Food Science & Emerging Technologies, 2016, 36:26-33. DOI: 10.1016/j.ifset.2016.05.013. |
[19] |
HALL M J, MIDDLETON R F, WESTMACOTT D. The fractional inhibitory concentration (FIC) index as a measure of synergy[J]. Journal of Antimicrobial Chemotherapy, 1983, 11(5):427-433.DOI: 10.1093/jac/11.5.427.
doi: 10.1093/jac/11.5.427 |
[20] |
WANG C J, CHANG T, YANG H, et al. Surface physiological changes induced by lactic acid on pathogens in consideration of pKa and pH[J]. Food Control, 2014, 46:525-531. DOI: 10.1016/j.foodcont.2014.06.024.
doi: 10.1016/j.foodcont.2014.06.024 |
[21] | 吕飞. 天然植物精油的抑菌活性及其作用机理研究[D]. 北京: 北京化工大学, 2011. |
LV F. Antimicrobial effects and mechanism of action of plant essential oils[D]. Beijing: Beijing University of Chemical Technology, 2011. | |
[22] |
LIN, MAO X F, SUN Y H, et al. Antibacterial mechanism of artemisinin/beta-cyclodextrins against methicillin-resistant Staphylococcus aureus(MRSA)[J]. Microbial Pathogenesis, 2018, 118:66-73. DOI: 10.1016/j.micpath.2018.03.014.
doi: 10.1016/j.micpath.2018.03.014 |
[23] | 侯温甫, 欧阳何一, 吴忌, 等. 曲酸对冷鲜鸭肉中优势腐败菌的抑制作用及其抑菌机理研究[J]. 食品科学, 2019,40(1):278-285. |
HOU W F, OUYANG H Y, WU J, et al. Inhibitory effect of kojic acid on dominant spoilage bacteria in chilled duck meat and its mechanism[J]. Food Science, 2019,40(1):278-285. DOI: 10.7506/spkx1002-6630-20180613-226. | |
[24] |
LI K J, GUAN G L, ZHU J X, et al. Antibacterial activity and mechanism of a laccase-catalyzed chitosan-Gallic acid derivative against Escherichia coli and Staphylococcus aureus[J]. Food Control, 2019, 96:234-243. DOI: 10.1016/j.foodcont.2018.09.021.
doi: 10.1016/j.foodcont.2018.09.021 |
[25] |
COX S, MANN C, MARKHAM J, et al. Determining the antimicrobial actions of tea tree oil[J]. Molecules, 2001, 6(12):87-91. DOI: 10.3390/60100087.
doi: 10.3390/60100087 |
[26] |
SHEN S X, ZHANG T H, YUAN, et al. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane[J]. Food Control, 2015, 47:196-202. DOI: 10.1016/j.foodcont.2014.07.003.
doi: 10.1016/j.foodcont.2014.07.003 |
[27] |
LONG M, WANG J, ZHUANG H, et al. Performance and mechanism of standard nano-TiO2 (P-25) in photocatalytic disinfection of foodborne microorganisms-Salmonella typhimurium and Listeria monocytogenes[J]. Food Control, 2014, 39:68-74. DOI: 10.1016/j.foodcont.2013.10.033.
doi: 10.1016/j.foodcont.2013.10.033 |
[28] |
BAJPAI V K, SHARMA A, BAEK K H. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens[J]. Food Control, 2013, 32(2):582-590. DOI: 10.1016/j.foodcont.2013.01.032.
doi: 10.1016/j.foodcont.2013.01.032 |
[29] | 刘唤明, 张文滔, 吴燕燕, 等. 脂肽和茶多酚对副溶血弧菌的协同抑菌效应和机理[J]. 食品科学, 2017,38(13):14-19. |
LIU H M, ZHANG W T, WU Y Y, et al. Synergistic antimicrobial effect and mechanism of lipopeptides and tea polyphenols against Vibrio parahaemolyticus [J]. Food Science, 2017,38(13):14-19. DOI: 10.7506/spkx1002-6630-201713003. |
[1] | 赵金满, 韩馨悦, 程瑞明, 张志东. 塞罕坝自然保护区华北落叶松和樟子松人工林健康评价[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 199-206. |
[2] | 林强, 陆天宇, 沈海龙, 王元兴, 张鹏. 长期结实和不结实红松针叶光合生理参数的差异[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 137-146. |
[3] | 王帆, 贾炜玮, 唐依人, 李丹丹. 基于TLS的红松树冠半径提取及其外轮廓模型构建[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 13-22. |
[4] | 孙铭辰, 姜立春. 基于机器学习算法的樟子松立木材积预测[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 31-37. |
[5] | 杨永超, 段文标, 陈立新, 曲美学, 王亚飞, 王美娟, 石金永, 潘磊. 模拟氮磷沉降和凋落物处理对两种林型红松林土壤有机碳组分的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 57-66. |
[6] | 贾庆彬, 刘庚, 赵佳丽, 李奎友, 孙文生. 红松半同胞家系生长性状变异分析与优良家系选择[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 109-116. |
[7] | 刘雅楠, 刘洋, 兰再平, 铁牛, 张梦弢, 王成德, 罗奇辉, 张晨. 不同灌溉方式对樟子松生长、光合特性及土壤水分运移的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 135-143. |
[8] | 李佳欣, 牟长城, 田博宇, 叶林. 林隙大小和隙内位置对小兴安岭蒙古栎林内红松光合能力的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 159-168. |
[9] | 辛士冬, 姜立春, 穆林. 黑龙江省红松人工林林分乔木层可加性碳储量模型[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 115-121. |
[10] | 陈秀波, 段文标, 陈立新, 朱德全, 赵晨晨, 刘东旭. 小兴安岭3种原始红松混交林土壤nirK型反硝化微生物群落特征[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 77-86. |
[11] | 刘楠, 冯富娟, 张秀月. 原始红松林皆伐后穿透雨对凋落物淋溶过程的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 159-167. |
[12] | 梁薇薇, 陈立新, 段文标, 李亦菲, 李少然, 于颖颖. 椴树-红松林林隙大小与枯叶分解对土壤香草酸含量的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 109-116. |
[13] | 王晓蕾, 崔晓坤, 张鹏, 沈海龙, 杨玲. 裸层积处理方式和时间对红松种子萌发状态的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 37-46. |
[14] | 韩玉娜, 张瑜, 金光泽. 腐烂等级、径级对阔叶红松林木质残体含水率和密度的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 133-140. |
[15] | 宋来萍, 刘礴霏, 王玉华, 高敬泽. 呼伦贝尔沙地不同树龄樟子松对气候的响应[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 159-164. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1118
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1037
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||