
基于NIRS的马尾松苗木根部含水量预测模型
Prediction model of moisture content of masson pine seedling roots based on near infrared spectroscopy
【目的】马尾松是我国南方主要造林树种,其根部水分含量是评价树木活力的重要指标。本研究构建了一种基于近红外光谱(near infrared spectroscopy,NIRS)的马尾松苗木根部含水量预测模型。【方法】首先采集根部近红外光谱数据,然后利用可变加权堆叠自动编码器结合支持向量回归构建预测模型。可变加权堆叠自编码器用来逐层提取与输出相关的特征,支持向量回归根据自编码器生成的特征实现了含水量更精确预测。【结果】与其他常用模型的结果相比,提出的模型在马尾松苗木根部水分预测中可以达到最佳性能,校正集中决定系数达到0.970 8,均方根误差为0.635 8;预测集中决定系数达到0.941 3,均方根误差为1.027 0。【结论】基于近红外光谱技术, 可变加权堆叠自动编码器与支持向量回归相结合可实现马尾松苗木根部含水量准确预测。
【Objective】 Masson pine is the main afforestation species in southern China. The moisture content of roots is an important indicator for evaluating the vigour of seedlings. In this study, the method for estimating moisture content of masson pine seedling roots based on near infrared spectroscopy is advanced. 【Method】 The spectrum of masson pine seedling root is obtained. The prediction model which combines variable-wise weighted stacked autoencoder with support vector regression, was proposed to estimate the moisture content in the root of masson pine seedlings. The variable-wise weighted stacked autoencoder is used to extract the features which relating to the output and the support vector regression further accurately predict the moisture contents by using the identified features. 【Result】 Compared with the other commonly used models, our model had the best performance in the root moisture prediction, withR2 value of 0.970 8 and RMSE of 0.635 8 in the training dataset and R2 value of 0.941 3 and RMSE of 1.027 0 in the validation dataset. 【Conclusion】 The combination of the variable-wise weighted stacked autoencoder and support vector regression is feasible to realize the accurate prediction of moisture content in masson pine seedlings based on near infrared spectroscopy.
马尾松苗木 / 水分含量 / 近红外光谱 / 自动编码器 / 可变加权 / 支持向量回归
masson pine seedling / moisture content / near infrared spectroscopy / autoencoder / variable-wise weighted / support vector regression
[1] |
沈海龙, 丁贵杰, 高捍东, 等. 苗木培育学[M]. 北京: 中国林业出版社, 2009.
|
[2] |
|
[3] |
张亚伟, 王书茂, 陈度, 等. 基于近红外的小麦植株含水率检测方法[J]. 农业机械学报, 2017, 48(S1):118-122,261.
|
[4] |
吴伟斌, 刘文超, 李泽艺, 等. 基于高光谱的茶叶含水量检测模型建立与试验研究[J]. 河南农业大学学报, 2018, 52(5):818-824. DOI: 10.16445/j.cnki.1000-2340.2018.05.024.
|
[5] |
刘燕德, 邓清, 张光伟. 高光谱技术的赣南脐橙叶片含氮量分析[J]. 中国农机化学报, 2016, 37(9):99-103. DOI: 10.13733/j.jcam.issn.2095-5553.2016.09.022.
|
[6] |
孔军龙, 赵京音, 杨娟. 基于可见/近红外光谱技术定量分析青菜叶片含氮量[J]. 上海农业学报, 2013, 29(3):36-39. DOI: 10.3969/j.issn.1000-3924.2013.03.009.
|
[7] |
王志超, 王建军, 戴晓宇, 等. 基于低成本RGB相机和近红外相机的作物叶片叶绿素含量估测方法比较研究[J]. 吉林农业, 2018(24):53. DOI: 10.14025/j.cnki.jlny.2018.24.031.
|
[8] |
裴浩杰, 冯海宽, 李长春, 等. 基于多元线性回归和随机森林的苹果叶绿素含量高光谱估测方法比较[J]. 江苏农业科学, 2018, 46(17):224-230. DOI: 10.15889/j.issn.1002-1302.2018.17.060.
|
[9] |
|
[10] |
李颖, 李耀翔, 徐浩凯, 等. 基于降噪处理的蒙古栎木材气干密度NIRS定标模型[J]. 南京林业大学学报(自然科学版), 2016, 40(6):148-156. DOI: 10.3969/j.issn.1000-2006.2016.06.023.
|
[11] |
刘镇波, 孙凤亮,
|
[12] |
|
[13] |
|
[14] |
|
[15] |
沈剑波, 雷相东, 李玉堂, 等. 基于BP神经网络的长白落叶松人工林林分平均高预测[J]. 南京林业大学学报(自然科学版), 2018, 42(2):147-154.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
/
〈 |
|
〉 |