基于SNP标记的广东省松材线虫种群分化研究

黄金思, 奚晓桐, 丁晓磊, 叶建仁

南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (6) : 25-31.

PDF(1565 KB)
PDF(1565 KB)
南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (6) : 25-31. DOI: 10.3969/j.issn.1000-2006.201903007
专题报道

基于SNP标记的广东省松材线虫种群分化研究

作者信息 +

Study on the population differentiation of Bursaphelenchus xylophilus in Guangdong Province by SNP markers

Author information +
文章历史 +

摘要

【目的】运用SNP标记研究中国广东省松材线虫虫株SNP位点多样性,从分子角度探讨广东省不同地区松材线虫种群的亲缘关系,为松材线虫病的疫源追溯提供基础。【方法】收集来自于广东省各地区松材线虫虫株共30株,提取DNA并进行基因组重测序;利用生物信息学软件分析广东省松材线虫的SNPs位点信息及基因型类型,依据以上信息进行种群聚类分析。【结果】对30株松材线虫虫株SNPs数据进行统计分析,发现GD01、GD09、GD12、GD20、GD22、GD24、GD25这7株虫株的SNP数量、纯合子数量都明显少于其余23株虫株;对基因型类型进行统计分析发现,以上7株虫株出现频率较高的基因型为A->G、C->G、G->C、T->C;其余23株虫株则是A->G、C->T、G->A、T->C这4种基因型出现的频率较高。而通过主成分和聚类分析可将这30株虫株分为3类。【结论】广东省松材线虫种群遗传多样性较高,聚类分析表明其具有不同的传播来源。

Abstract

【Objective】This study is focused on the genetic variations and population structures among different Bursaphelenchus xylophilus strains isolated from Guangdong Province using single nucleotide polymorphisms (SNPs) as markers. This work provided fundamental information for the establishment of a B. xylophilus tracking system in China.【Method】Thirty strains ofB. xylophilus from different regions of the Guangdong Province were collected and sequenced. Genome-wide SNPs were analyzed using bioinformatics, and population splitting events were discovered based on previous SNP data.【Result】Statistical analysis of SNPs across 30 B. xylophilus strains showed that the number of SNPs and homozygotes in seven of the 30 strains (GD01, GD09, GD12, GD20, GD22, GD24 and GD25) were less than the remaining 23 strains. The genotypes that occurred with a higher frequency in these seven strains were A->G, C->G, G->C, T->C, while the other 23 strains contained genotypes that were A->G, C->T, G->A, T->C. The strains from Guangdong Province could be divided into 3 populations based on PCA and hierarchical clustering.【Conclusion】The genetic diversity ofB. xylophilus population in Guangdong Province is relatively high; thus, it should have different sources through which genetic variation is introduced.

关键词

松材线虫 / 高通量测序 / SNP / 聚类分析 / 广东省

Key words

Bursaphelenchus xylophilus / high-throughput sequencing / SNP / cluster analysis / Guangdong Province

引用本文

导出引用
黄金思, 奚晓桐, 丁晓磊, . 基于SNP标记的广东省松材线虫种群分化研究[J]. 南京林业大学学报(自然科学版). 2019, 43(6): 25-31 https://doi.org/10.3969/j.issn.1000-2006.201903007
HUANG Jinsi, XI Xiaotong, DING Xiaolei, et al. Study on the population differentiation of Bursaphelenchus xylophilus in Guangdong Province by SNP markers[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2019, 43(6): 25-31 https://doi.org/10.3969/j.issn.1000-2006.201903007
中图分类号: S763   

参考文献

[1]
PROENCA D N, GRASS G, MORAIS P V. Understanding pine wilt disease: roles of the pine endophytic bacteria and of the bacteria carried by the disease-causing pinewood nematode.[J]. Microbiology Open, 2017, 6(2):1-20. DOI: 10.1002/mbo3.415.
[2]
MOTA M M, VIEIRA P. Pine wilt disease: a worldwide threat to forest ecosystems[M]. Berlin: Springer Netherlands, 2008.
[3]
COURTOIS B, FROUIN J, GRECO R, et al. Genetic diversity and population structure in a European collection of rice[J]. Crop Science, 2012, 52(4):1663-1657. DOI: 10.2135/cropsci2011.11.0588.
[4]
SINGH N, CHOUDHURY D R, SINGH A K, et al. Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties[J]. PLoS One, 2013, 8(12):e84136. DOI: 10.1371/journal.pone.0084136.
[5]
HAYDEN M J, TABONE T L, NGUYEN T M, et al. An informative set of SNP markers for molecular characterisation of Australian barley germplasm[J]. Crop and Pasture Science, 2010, 61(1):70-83. DOI: 10.1071/CP09140.
[6]
张路平, 孔繁瑶, 杨宝君. 松材线虫和拟松材线虫不同株系线粒体DNA RAPD分析[J]. 林业科学研究, 2002, 15(1):7-12. DOI: 10.13275/j.cnki.lykxyj.2002.01.002.
ZHANG L P, KONG F Y, YANG B J. Intra-and interspecific variation in Bursaphelenchus xylophilus and B.mucronatus revealed by mtDNA polymorphism [J]. Forest Research, 2002, 15(1):7-12.
[7]
VIEIRA P, CASTAGNONE C, MALLEZ S, et al. Sequence variability of the Mspl satellite DNA family of the pinewood nematode Bursaphelenchus xylophilus at different geographic scales[J]. Molecular Phylogenetics and Evolution, 2014, 70(1):120-129. DOI: 10.1016/j.ympev.2013.09.017.
[8]
FILIPIAK A, HASIóW-JAROSZEWSKA B. The use of real-time polymerase chain reaction with high resolution melting (real-time PCR-HRM) analysis for the detection and discrimination of nematodes Bursaphelenchus xylophilus and Bursaphelenchus mucronatus[J]. Molecular and Cellular Probes, 2016, 30(2):113-117. DOI: 10.1016/j.mcp.2016.02.003.
[9]
ZHOU L F, CHEN F M, XIE L Y, et al. Genetic diversity of pine-parasitic nematodesBursaphelenchus xylophilus and Bursaphelenchus mucronatus in China[J]. Forest Pathology, 2017, 47(4):e12334. DOI: 10.1111/efp.12334.
[10]
唐立群, 肖层林, 王伟平. SNP分子标记的研究及其应用进展[J]. 中国农学通报, 2012, 28(12):154-158. DOI: 10.3969/j.issn.1000-6850.2012.12.028.
TANG L Q, XIAO C L, WANG W P. Research and application progress of SNP markers[J]. Chinese Agricultural Science Bulletin, 2012, 28(12):154-158.
[11]
CHENG X Y, CHENG F X, XU R M, et al. Genetic variation in the invasive process of Bursaphelenchus xylophilus (Aphelenchida: Aphelenchoididae) and its possible spread routes in China[J]. Heredity, 2008, 100(4):356-365. DOI: 10.1038/sj.hdy.6801082.
[12]
MALLEZ S, CASTAGNONE C, ESPADA M, et al. Worldwide invasion routes of the pinewood nematode: what can we infer from population genetics analyses?[J]. Biologocal Invasions, 2015, 17(4):1199-1213. DOI: 10.1007/s10530-014-0788-9.
[13]
MALLEZ S, CASTAGNONE C, ESPADA M, et al. First insights into the genetic diversity of the pinewood nematode in its native area using new polymorphic microsatellite loci[J]. PLoS One, 2013, 8(3):e59165. DOI: 10.1371/journal.pone.0059165.
[14]
刘维志. 植物线虫志[M]. 北京: 中国农业出版社, 2004.
[15]
陈凤毛, 叶建仁, 吴小芹, 等. 松材线虫SCAR标记与检测技术[J]. 林业科学, 2012, 48(3):88-94. DOI: 10.11707/j.1001-7488.20120314.
CHEN F M, YE J R, WU X Q, et al. SCAR marker and detection technique of Bursaphelenchus xylophilus [J]. Scientia Silvae Sinicae, 2012, 48(3):88-94.
[16]
CHUANG L, CHANG H, LIN M, et al. Chaotic particle swarm optimization for detecting SNP-SNP interactions for CXCL12-related genes in breast cancer prevention[J]. European Journal of Cancer Prevention, 2012, 21(4):336-342. DOI: 10.1097/CEJ.0b013e32834e31f6.
[17]
LIU Y, LI M, CHEUNG Y M, et al. SKM-SNP: SNP markers detection method[J]. Journal of Biomedical Informatics, 2010, 43(2):233-239. DOI: 10.1016/j.jbi.2009.11.004.
[18]
BASCIANO P A, MATAKAS J, PECCI A, et al. β-1 tubulin R307H SNP alters microtubule dynamics and affects severity of a hereditary thrombocytopenia[J]. Journal of Thrombosis and Haemostasis, 2015, 13(4):651-659. DOI: 10.1111/jth.12824.
[19]
REN J, CHEN L, SUN D, et al. SNP-revealed genetic diversity in wild emmer wheat correlates with ecological factors[J]. BMC Evolutionary Biology, 2013, 13(169):1-15. DOI: 10.1186/1471-2148-13-169.
[20]
REN J, SUN D, CHEN L, et al. Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat[J]. International Journal of Molecular Sciences, 2013, 14(4):7061-7088. DOI: 10.3390/ijms14047061.
[21]
BALOCH F S, ALSALEH A, SHAHID M Q, et al. A Whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from central fertile crescent[J]. PloS One, 2017, 12(1). DOI: 10.1371/journal.pone.0167821.
[22]
LIU Z, LI J, FA X, et al. Assessing the numbers of SNPs needed to establish molecular IDs and characterize the genetic diversity of soybean cultivars derived from Tokachi nagaha[J]. Crop Journal, 2017, 5(4):326-336. DOI: 10.1016/j.cj.2016.11.001.
[23]
AI X, LIANG Y, WANG J, et al. Genetic diversity and structure of elite cotton germplasm (Gossypium hirsutum L.) using genome-wide SNP data[J]. Genetica, 2017, 145(4-5):409-416. DOI: 10.1007/s10709-017-9976-8.
[24]
INGHELANDT D V, MELCHINGER A E, LEBRETON C, et al. Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers[J]. Theoretical & Applied Genetics, 2010, 120(7):1289-1299. DOI: 10.1007/s00122-009-1256-2.
[25]
KIKUCHI T, COTTON J A, DALZELL J J, et al. Genomic insights into the origin of Parasitism in the emerging plant pathogen Bursaphelenchus xylophilus[J]. PloS Pathogens, 2011, 7(9):e1002219. DOI: 10.1371/journal.ppat.1002219.
[26]
FIGUEIREDO J, SIMOES M J, GOMES P, et al. Assessment of the geographic origins of pinewood nematode isolates via single nucleotide polymorphism in effector genes[J]. PloS One, 2013, 8(12):e83542. DOI: 10.1371/journal.pone.0083542.
[27]
PEREIRA F, MOREIRA C, FONSECA L, et al. New insights into the phylogeny and worldwide dispersion of two closely related nematode species, Bursaphelenchus xylophilus and Bursaphelenchus mucronatus[J]. PloS One, 2013, 8(2):e56288. DOI: 10.1371/journal.pone.0056288.

基金

国家重点研发计划(2018YFD0600203)
国家自然科学基金项目(31800543)

编辑: 刘昌来

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1565 KB)

Accesses

Citation

Detail

段落导航
相关文章

/