基于非参数方法的落叶松树干削度方程

何培, 夏宛琦, 姜立春

南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (6) : 184-192.

PDF(4242 KB)
PDF(4242 KB)
南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (6) : 184-192. DOI: 10.3969/j.issn.1000-2006.201903038
研究论文

基于非参数方法的落叶松树干削度方程

作者信息 +

Stem taper modeling equation for dahurian larch based on nonparametric regression methods

Author information +
文章历史 +

摘要

【目的】基于非参数理论,研究构建大兴安岭兴安落叶松(Larix gmelinii)非参数可加性树干削度方程,并与传统的Max and Burkhart 参数削度方程进行对比。【方法】利用树高、胸径、不同高度处直径、不同部位高度等变量及其变形构建非参数可加性削度方程。采用 7种光滑样条函数:薄板回归样条函数(TP)、 Duchon 样条函数(DS)、三次回归样条函数(CR)、P-样条函数(PS)、高斯过程平滑样条函数(GP)、B-样条函数(BS)和局部回归光滑函数(LO),基于R软件mgcv包的Gamm函数对非参数模型进行拟合。【结果】使用相对直径(d/D)作为因变量,胸径的平方(D2)、树高(H)、相对树高的算术平方根($\sqrt{h/H}$)作为自变量, 构建兴安落叶松最佳非参数可加性树干削度方程。拟合结果表明:基于CR和LO样条函数的可加性削度方程具有较小的R2(决定系数)和较大的赤池信息量准则(AIC)值,且CR和LO的残差图重心线略呈中间高、两头低的趋势。其他基于5种光滑样条函数的可加性削度方程表现出相似的拟合结果。可加性模型除了使用LO样条函数外,其他样条函数都优于Max and Burkhart参数削度方程的拟合结果。总体检验结果表明,除了CR样条函数模型外,其他各非参数模型(TP、 DS、 PS、GP 和BS)与拟合结果基本一致,即都优于Max and Burkhart参数削度模型的预测精度。基于树干不同高度直径预测的误差对比表明,除了CR模型外,非参数模型(TP、 DS、 PS、GP 和BS)在大多数树干高度处直径预测的平均误差和绝对平均误差都小于Max and Burkhart参数模型预测值。【结论】非参数模型(TP、 DS、PS、 GP和BS)在拟合统计量、残差分布图、总体和树干不同高度处直径的预测精度都表现出一致性,并优于林业上通常使用的Max and Burkhart参数削度方程。当模型以预测为目的时,所构建的非参数可加性削度方程可用于大兴安岭兴安落叶松干形和材积预测。

Abstract

【Objective】Based on the nonparametric theory, the nonparametric additive taper equation was constructed for dahurian larch (Larix gmelinii) in Greater Khingan Mountains. The common parametric taper equation of Max and Burkhart, in forestry, was used for comparison.【Method】A nonparametric additive taper equation was constructed using the total height, diameter at breast height, diameter at different heights, height at different stems, and their transformation. The nonparametric model was fitted based on the Gamm function in the mgcv library of the R software. Specifically, we used 7 smooth splines: thin plate regression splines (TP), Duchon splines (DS), cubic regression splines (CR), P-splines (PS), Gaussian process smooths (GP), B-spline (BS), and local regression (LO).【Result】The optimal nonparametric form of taper equation was constructed using response variable relative diameter (d/D) and explanatory variables such as the square of diameter at breast height (D2), total height (H) and square root of relative height($\sqrt{h/H}$). Fitting results showed that the additive taper equations based on CR and LO had smaller R2 and larger AIC values, and the residual trend lines of CR and LO were slightly higher in the middle and lower at both ends. The nonparametric additive taper equation fitting effects of the other 5 smooth splines were similar. The fitting results of these additive models are better than those of Max and Burkhart, except for LO model. The overall validation results showed that the nonparametric models (TP, DS, PS, GP and BS) were basically consistent with the fitting results, except for CR. That is, they were superior to the parametric taper equation of Max and Burkhart. The error comparison based on the prediction of different height diameters of stems showed that the average error and absolute mean error of the nonparametric models (TP, DS, PS, GP and BS) were less than those of Max and Burkhart at most heights, except for CR. 【Conclusion】The nonparametric models (TP, DS, PS, GP and BS) showed consistent accuracy in fitting statistics, residual distribution, and the prediction from overall and different heights. These models are superior compared to those commonly used parametric taper equation of Max and Burkhart in forestry. When prediction is the main purpose for building a model, the nonparametric additive taper equation constructed in this study can be used not only to predict the shape of the stem but also the volume of the dahurian larch in Daxing’anling.

关键词

非参数模型 / 样条函数 / 削度方程 / 兴安落叶松

Key words

nonparametric models / spline function / taper equation / Larix gmelinii

引用本文

导出引用
何培, 夏宛琦, 姜立春. 基于非参数方法的落叶松树干削度方程[J]. 南京林业大学学报(自然科学版). 2020, 44(6): 184-192 https://doi.org/10.3969/j.issn.1000-2006.201903038
HE Pei, XIA Wanqi, JIANG Lichun. Stem taper modeling equation for dahurian larch based on nonparametric regression methods[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2020, 44(6): 184-192 https://doi.org/10.3969/j.issn.1000-2006.201903038
中图分类号: S791.222   

参考文献

[1]
KOZAK A. My last words on taper equations[J]. The Forestry Chronicle, 2004,80(4):507-515. DOI: 10.5558/tfc80507-4.
[2]
KUBLIN E, AUGUSTIN N H, LAPPI J. A flexible regression model for diameter prediction[J]. European Journal of Forest Research, 2008,127(5):415-428. DOI: 10.1007/s10342-008-0225-7.
[3]
MENÉNDEZ-MIGUÉLEZ M, CANGA E, ÁLVAREZ-ÁLVAREZ P, et al. Stem taper function for sweet chestnut (Castanea sativa Mill.) coppice stands in northwest Spain[J]. Annals of Forest Science, 2014,71(7):761-770. DOI: 10.1007/s13595-014-0372-6.
[4]
ARIAS-RODIL M, CASTEDO-DORADO F, CÁMARA-OBREGÓN A, et al. Fitting and calibrating a multilevel mixed-effects stem taper model for maritime pine in NW Spain[J]. PloS one, 2015,10(12):e0143521. DOI: 10.1371/journal.pone.0143521.
[5]
SCHRÖDER T, COSTA E A, VALÉRIO A F, et al. Taper equations for Pinus elliottii Engelm. in southern Paraná, Brazil[J]. Forest Science, 2015,61(2):311-319. DOI: 10.5849/forsci.14-054.
[6]
ROJO A, PERALES X, SÁNCHEZ-RODRÍGUEZ F, et al. Stem taper functions for maritime pine (Pinus pinaster Ait.) in Galicia (Northwestern Spain)[J]. European Journal of Forest Research, 2005,124(3):177-186. DOI: 10.1007/s10342-005-0066-6.
[7]
CORRAL-RIVAS J J, DIÉGUEZ-ARANDA U, CORRAL RIVAS S, et al. A merchantable volume system for major pine species in El Salto, Durango (Mexico)[J]. Forest Ecology and Management, 2007,238(1/2/3):118-129. DOI: 10.1016/j.foreco.2006.09.074.
[8]
LI R X, WEISKITTEL A R. Comparison of model forms for estimating stem taper and volume in the primary conifer species of the North American Acadian Region[J]. Annals of Forest Science, 2010,67(3):302. DOI: 10.1051/forest/2009109.
[9]
ÖZCELIK R, KARATEPE Y, GÜRLEVIK N, et al. Development of ecoregion-based merchantable volume systems for Pinus brutia Ten. and Pinus nigra Arnold. in southern Turkey[J]. Journal of Forestry Research, 2016,27(1):101-117. DOI: 10.1007/s11676-015-0147-4.
[10]
ÖZÇELIK R, CRECENTE-CAMPO F. Stem taper equations for estimating merchantable volume of Lebanon cedar trees in the Taurus mountains, southern Turkey[J]. Forest Science, 2016,62(1):78-91. DOI: 10.5849/forsci.14-212.
[11]
MUHAIRWE C K. Taper equations for Eucalyptus pilularis and Eucalyptus grandis for the north coast in New South Wales, Australia[J]. Forest Ecology and Management, 1999,113(2-3):251-269. DOI: 10.1016/S0378-1127(98)00431-9.
[12]
GOMAT H Y, DELEPORTE P, MOUKINI R, et al. What factors influence the stem taper of Eucalyptus: growth, environmental conditions, or genetics?[J]. Annals of Forest Science, 2011,68(1):109-120. DOI: 10.1007/s13595-011-0012-3.
[13]
WIKLUND K, KONÖPKA B, NILSSON L-O. Stem form and growth in Picea abies (L.) Karst, in response to water and mineral nutrient availability[J]. Scandinavian Journal of Forest Research, 1995,10(1/2/3/4):326-332. DOI: 10.1080/02827589509382899.
[14]
SHARMA M, ODERWALD R G. Dimensionally compatible volume and taper equations[J]. Canadian Journal of Forest Research, 2001,31(5):797-803. DOI: 10.1139/x01-005.
[15]
LEITES L P, ROBINSON A P. Improving taper equations of loblolly pine with crown dimensions in a mixed-effects modeling framework[J]. Forest Science, 2004,50(2):204-212.
[16]
JIANG L, LIU R. Segmented taper equations with crown ratio and stand density for Dahurian larch (Larix gmelinii) in Northeastern China[J]. Journal of Forestry Research, 2011,22(3):347-352. DOI: 10.1007/s11676-011-0178-4.
[17]
LEE W-K, BIGING G S, SON Y, et al. Geostatistical analysis of regional differences in stem taper form of Pinus densiflora in central Korea[J]. Ecological Research, 2006,21(4):513-525. DOI: 10.1007/s11284-006-0152-3.
[18]
NIGH G, SMITH W. Effect of climate on lodgepole pine stem taper in British Columbia, Canada[J]. Forestry, 2012,85(5):579-587. DOI: 10.1093/forestry/cps063.
[19]
ADAMEC Z, DRÁPELA K. Generalized additive models as an alternative approach to the modelling of the tree height-diameter relationship[J]. J For Sci, 2015,61(6):235-243. DOI: 10.17221/14/2015-JFS.
[20]
WOOD S N. Generalized additive models: an introduction with R [M]. Second edition. Boca Raton: CRC Press, 2017.
[21]
余黎, 雷相东, 王雅志 等. 基于广义可加模型的气候对单木胸径生长的影响研究[J]. 北京林业大学学报, 2014,36(5):22-32.
YU L, LEI X D, WANG Y Z, et al. Impact of climate on individual tree radial growth based on generalized additive model[J]. Journal of Beijing Forestry University, 2014,36(5):22-32. DOI: 10.13332/j.cnki.jbfu.2014.05.007.
[22]
MAX T A, BURKHART H E. Segmented polynomial regression applied to taper equations[J]. Forest Science, 1976,22(3):283-289.
[23]
BROOKS J R, JIANG L C, CLARK A, III. Compatible stem taper, volume, and weight equations for young longleaf pine plantations in Southwest Georgia[J]. Southern Journal of Applied Forestry, 2007,31(4):187-191.
[24]
JIANG L C, BROOKS J R. Taper, volume, and weight equations for red pine in West Virginia[J]. Northern Journal of Applied Forestry, 2008,25(3):151-153.
[25]
ROBINSON A P, LANE S E, THÉRIEN G. Fitting forestry models using generalized additive models: a taper model example[J]. Canadian Journal of Forest Research, 2011,41(10):1909-1916. DOI: 10.1139/X11-095.
[26]
MUHAIRWE C K. Tree form and taper variation over time for interior lodgepole pine[J]. Canadian Journal of Forest Research, 1994,24(9):1904-1913. DOI: 10.1139/x94-245.
[27]
KOSKELA L, NUMMI T, WENZEL S, et al. On the analysis of cubic smoothing spline-based stem curve prediction for forest harvesters[J]. Canadian Journal of Forest Research, 2006,36(11):2909-2919. DOI: 10.1139/x06-165.

基金

国家自然科学基金项目(31570624)
黑龙江省应用技术研究与开发计划(GA19C006)
中央高校基本科研业务费专项(2572019CP15)

编辑: 李燕文

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(4242 KB)

Accesses

Citation

Detail

段落导航
相关文章

/