植物生长延缓剂对板栗苗枝条生长及叶片非结构性碳水化合物的影响

张亦弛, 郭素娟

南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (6) : 85-93.

PDF(2290 KB)
PDF(2290 KB)
南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (6) : 85-93. DOI: 10.3969/j.issn.1000-2006.201903071
研究论文

植物生长延缓剂对板栗苗枝条生长及叶片非结构性碳水化合物的影响

作者信息 +

Effects of plant growth retardants on the growth of branches and non-structural carbohydrates in leaves of chestnut (Castanea mollissima) seedlings

Author information +
文章历史 +

摘要

【目的】探究叶片喷施不同质量浓度的多效唑(PP333)、矮壮素(CCC)、烯效唑(S3307)对板栗苗枝条生长动态及叶片内非结构性碳水化合物(NSC)[可溶性糖(SS)和淀粉(ST)]含量的影响,为板栗化学调控提供理论依据。【方法】以备选砧木3年生板栗‘燕山早丰’(Castanea mollissima‘Yanshanzaofeng’)苗为试验材料,选择15%多效唑可湿性粉剂、50%矮壮素水剂、5%烯效唑可湿性粉剂配置溶液,在花芽分化期选择天气晴朗无风的早晨分别喷施多效唑(50、100、150 mg/L)、矮壮素(100、150、200 mg/L)和烯效唑(30、60、90 mg/L),以喷清水为对照(CK),各处理进行整株喷施,直至叶面布满水珠而不滴水为止。试验采用单因素完全随机区组设计,单株为1个小区,每个处理设5个重复。测定分析3种植物生长延缓剂处理下板栗苗木营养枝、标准枝的生长动态及叶片内非结构性碳水化合物的含量。【结果】①多效唑、矮壮素和烯效唑均能显著降低板栗苗木枝条长度,增加枝条直径,对于标准枝喷施30 mg/L烯效唑效果最好,处理后90 d使得标准枝长度较对照减少24.13%,直径增加26.45%;②延缓剂促进苗木枝条粗壮、长度缩短,延缓板栗砧木生长,提高嫁接成活率并有利于嫁接后生长,100 mg/L多效唑对营养枝促壮效果最好,较对照增加36.63%,长度减少17.10%。③延缓剂处理后,板栗叶片可溶性糖含量升高,其中150 mg/L矮壮素处理板栗苗木叶片内可溶性糖含量始终处于最高水平,且显著高于对照,在处理后90 d达到最高(61.95 mg/g)。④不同延缓剂处理对叶片淀粉含量有不同的影响,处理后30 d,100 mg/L矮壮素处理叶片内淀粉含量始终处于最高水平,且显著高于对照,在处理后60 d和90 d,淀粉含量分别高达1.54、1.51 mg/g;⑤3种延缓剂均能提高板栗苗木内非结构性碳水化合物含量,200 mg/L矮壮素处理对苗木非结构性碳水化合物增加效果最好,该浓度处理后的板栗苗木,其叶片内非结构性碳水化合物总量始终处于最高水平,最高达62.60 mg/g,且显著高于对照。【结论】植物生长延缓剂使得板栗苗木枝条粗壮、长度缩短,抑制砧木生长,从而提高板栗嫁接成活率并有利于嫁接后生长,其中60 mg/L烯效唑对标准枝的处理效果最好,100 mg/L多效唑对营养枝促壮效果最好;对板栗苗木喷施延缓剂有利于其叶片的碳供应,200 mg/L矮壮素处理效果最好;在植物生长延缓剂实际应用于板栗苗木培育中,应根据生产目的合理选择不同种类延缓剂及适宜的质量浓度。

Abstract

Different concentrations of paclobutrazol (PP333), chlormequat (CCC) and uniconazole (S3307) were sprayed to investigate the growth dynamics of branches and content of soluble sugar (SS), starch (ST) and non-structural carbohydrates (NSC) in leaves of chestnut (Castanea mollissima ) seedlings, in order to provide a theoretical basis for chemical regulation of chestnut. 【Method】A three-year-old chestnut ‘Yanshanzaofeng’ was used as a test material, and 15% paclobutrazol wettable powder, 50% chlormequat aqueous solution, and 5% uniconazole wettable powder formulation solution were selected as experimental solutions. During flower bud differentiation, we sprayed paclobutrazol (50, 100 and 150 mg/L), chlormequat (100, 150 and 200 mg/L) and uniconazole (30, 60 and 90 mg/L); the whole plant in each treatment was sprayed with clear water as a control (CK) on sunny and windless mornings until the leaves were covered with water droplets without dripping. To study the effects of three plant growth retardants on the growth dynamics of standard and vegetative branches of chestnut seedlings and the content of non-structural carbohydrates in leaves a single-factor completely random block design was used, with a single plant as a plot and five replicates for each treatment. 【Result】① Paclobutrazol, chlormequat and uniconazole significantly reduced the branch length of chestnut seedlings and increased the diameter of branches. The 30 mg/L uniconazole spray was the best for standard shoots. The length of standard shoot was reduced by 24.13% and diameter increased by 26.45% at 90 days after treatment. ② Retardants made the shoots thicker and shorter and could delay the growth of chestnut rootstock, improve the graft survival rate, and facilitate growth after grafting. The 100 mg/L paclobutrazol had the best effect in promoting nutrient shoot growth, making it more effective; the seedling branch increased by 36.63% and length decreased by 17.10%. ③ After spraying the seedlings with retardants, the soluble sugar content in chestnut leaves increased. Among them, the soluble sugar content in the leaves of chestnut seedlings treated with 150 mg/L chlormequat was always at the highest level and was significantly higher than that of the control. It reached the highest level (61.95 mg/g) after 90 days. ④ Different retardant treatments had different effects on the starch content of leaves. The starch content in leaves treated with 100 mg/L chlormequat at 30 days after treatment was always at the highest level and was significantly higher than that of the control. The contents were as high as 1.54 mg/g and 1.51 mg/g respectively. ⑤ All kinds of delaying agents could increase the content of non-structural carbohydrates in chestnut seedlings. After spraying the seedlings with retardants, the total amount of non-structural carbohydrates in the leaves of chestnut seedlings was always at the highest level and was significantly higher than that of the control.【Conclusion】Plant growth retardants made seedlings to grow thick, be shortened, and inhibited the growth of chestnut, improving the graft survival rate and facilitating the growth after grafting. Among the retardants, 30 mg/L uniconazole had the best treatment effect on standard shoots, while 100 mg/L paclobutrazol had the best effect in promoting the nutrient shoot growth. The application of retardants to chestnut seedlings was beneficial in the carbon supply of leaves. In this study, 200 mg/L chlormequat was the best treatment. Thus, in applying retardants for the cultivation of chestnut, different types and mass concentrations of retardants should be reasonably selected based on the purpose of production.

关键词

植物生长延缓剂 / 板栗 / / / 可溶性糖 / 淀粉 / 非结构性碳水化合物

Key words

plant growth retardant / chestnut (Castanea mollissima ) / branch / leaf / soluble sugar / starch / non-structural carbon hydrate

引用本文

导出引用
张亦弛, 郭素娟. 植物生长延缓剂对板栗苗枝条生长及叶片非结构性碳水化合物的影响[J]. 南京林业大学学报(自然科学版). 2020, 44(6): 85-93 https://doi.org/10.3969/j.issn.1000-2006.201903071
ZHANG Yichi, GUO Sujuan. Effects of plant growth retardants on the growth of branches and non-structural carbohydrates in leaves of chestnut (Castanea mollissima) seedlings[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2020, 44(6): 85-93 https://doi.org/10.3969/j.issn.1000-2006.201903071
中图分类号: S664.2;S718   

参考文献

[1]
刘静雅, 李绍才, 孙海龙, 等. 多效唑对紫穗槐生长及生理特性的影响[J]. 植物科学学报, 2016,34(2):271-279.
LIU J Y, LI S C, SUN H L, et al. Effects of paclobutrazol on growth and physiological characteristics of Amorpha fruticosa[J]. Plant Science Journal, 2016,34(2):271-279. DOI: 10.11913/PSJ.2095-0837.2016.20271.
[2]
宋海凤, 李绍才, 孙海龙, 等. 根施不同浓度多效唑对紫穗槐生长特性和相关生理指标的影响[J]. 植物生理学报, 2015,51(9):1495-1501.
SONG H F, LI S C, SUN H L, et al. Effects of different concentrations of paclobutrazol on growth characteristics and related physiological indexes of Amorpha fruticosa[J]. Plant Physiology Journal, 2015,51(9):1495-1501. DOI: 10.13592 /j.cnki.ppj .2015.0322.
[3]
张亦弛, 郭素娟. 2种生长延缓剂对板栗枝条生长和叶片碳氮代谢物积累的影响[J]. 林业科学, 2020,56(5):29-36.
ZHANG Y C, GUO S J. Effects of two growth retardants on the growth of chestnut branches and the accumulation of carbon and nitrogen metabolites in leaves[J]. Scientia Silvae Sinicae, 2020,56(5):29-36. DOI: 10.11707/j.1001-7488.20200504.
[4]
陈炫, 陶忠良, 吴志祥, 等. 多效唑+乙烯利对妃子笑荔枝内源激素及碳氮营养的影响[J]. 江西农业大学学报, 2012,34(1):27-33.
CHEN X, TAO Z L, WU Z X, et al. Effects of paclobutrazol and ethephon on endogenous hormones and carbon and nitrogen nutrition of Litchi chinensis[J]. Acta Agriculturae Universitatis Jiangxiensis, 2012,34(1):27-33. DOI: 10.13836/j.jjau.2012007.
[5]
郑涛, 潘东明. 漳州水仙矮化机理研究[J]. 南方农业学报, 2012,43(3):302-305.
ZHENG T, PAN D M. Dwarfing mechanism of Narcissus tazetta L. var. chinensis Roem treated with PP333[J]. Journal of Southern Agriculture, 2012,43(3):302-305. DOI: 10.3969/j:issn. 2095-1191.2012.03.302.
[6]
范志霞, 李绍才, 孙海龙. 多效唑作用下紫穗槐对干旱胁迫的生理响应及抗旱性评价[J]. 草业学报, 2017,26(3):132-141.
FAN Z X, LI S C, SUN H L. Physiological response and drought resistance of Amorpha fruticosa under drought stress[J]. Acta Prataculturae Sinica, 2017,26(3):132-141.DOI: 10.11686/cyxb2016138.
[7]
刘晓培, 张饮江, 李岩, 等. 矮壮素对苦草矮化特征及生理指标的影响[J]. 生态学杂志, 2012,31(10):2561-2567.
LIU X P, ZHANG Y J, LI Y, et al. Effects of cycocel on the dwarfing characteristics and physiological indices of Vallisneria natans[J]. Chinese Journal of Ecology, 2012,31(10):2561-2567. DOI: 10.13292/j.1000-4890.2012.0368.
[8]
陈晓光, 石玉华, 王成雨, 等. 氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒伏性的关系[J]. 中国农业科学, 2011,44(17):3529-3536.
CHEN X G, SHI Y H, WANG C Y, et al. Effects of nitrogen and PP333 application on the lignin synjournal of stem in relation to lodging resistance of wheat[J]. Scientia Agricultura Sinica, 2011,44(17):3529-3536. DOI: 10.3864/j.issn.0578-1752.2011.17.005.
[9]
李彦连, 张爱民. 植物营养生长与生殖生长辨证关系解析[J]. 中国园艺文摘. 2012,28(2):36-37.
LI Y L, ZHANG A M. Analysis of the relationship between plant nutritional growth and reproductive growth[J]. Chinese Horticultural Digest, 2012,28(2):36-37. DOI: 10.3969/j.issn.1672-0873.2012.02.017.
[10]
张宇和, 柳鎏, 梁维坚. 中国果树志板栗榛子卷[M]. 北京: 中国林业出版社, 2005.
ZHANG Y H, LIU J, LIANG W J. China Fruit Tree Chestnut Roll [M]. Beijing: China Forestry Publishing House, 2005.
[11]
秦江南, 郭永翠, 张锐. 植物生长延缓剂在果树上的应用研究进展[J]. 黑龙江农业科学, 2018(10):187-190.
QIN J N, GUO Y C, ZHANG R. Application progress of plant growth retardants in fruit trees[J]. Heilongjiang Agricultural Sciences, 2018(10):187-190.
[12]
LI M H, XIAO W F, WANG S G, et al. Mobile carbohydrates in himalayan tree line trees.I:evidence for carbon gain limitation but not for growth limitation[J]. Tree Physiology, 2008,28:1287-1296.
[13]
YEE D A, TISSUE D T. Relationships betweennon-structural carbohydrate concentration and flowering in a subtropical herb, Heliconia caribaea (Heliconiaceae)[J]. Caribbean Journal Ofence, 2005,41(2):243-249.
[14]
SAKAMAKI Y, INO Y. Response of non-structural carbohydrate content of belowground parts in Equisetum arvense according to the irradiance change during a growing season[J]. Journal of Plant Research, 2004,117(5):385-391. DOI: 10.1007/s10265-004-0171-5.
[15]
曲弨琪, 满秀玲, 段亮亮. 生物制剂对约书亚树幼苗成活及生理生化影响的综合评价[J]. 北京林业大学学报, 2012,34(4):67-72.
QU C Q, MAN X L, DUAN L L. Comprehensive evaluation on the effects of different biological agents on survival rate, growth, physiological and biochemical indexes of desert plant Yucca brevifolia seedlings[J]. Journal of Beijing Forestry University, 2012,34(4):67-72. DOI: 10.13332/j.1000-1522.2012.04.025.
[16]
李东胜, 史作民, 刘世荣, 等. 南北样带温带区栎属树种种子化学组成与气候因子的关系[J]. 生态学报, 2012,32(24):7857-7865.
LI D S, SHI Z M, LIU S R, et al. Relationships between chemical compositions of Quercus species seeds and climatic factors in temperate zone of NSTEC[J]. Acta Ecologica Sinica, 2012,32(24):7857-7865. DOI: 10.13332/j.1000-1522.2012.04.025.
[17]
BANSAL S, GERMINO M J. Temporal variation of nonstructural carbohydrates in montane conifers: similarities and differences among developmental stages, species and environmental conditions[J]. Tree Physiology, 2009,29(4):559-568. DOI: 10.1093/treephys/tpn045.
[18]
IMAJI A, SEIWA K. Carbon allocation to defense, storage, and growth in seedlings of two temperate broad-leaved tree species[J]. Oecologia, 2010,162(2):273-281. DOI: 10.1007/s00442-009-1453-3.
[19]
KORNER C. Carbon limitation in trees[J]. Journal of Ecology, 2003,91(1) : 4-17.
[20]
SHI P, KÖRNER C, HOCH G. A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the Eastern Himalayas[J]. Functional Ecology, 2008,22(2):213-220. DOI: 10.1111/j.1365-2435.2007.01370.x.
[21]
许锋, 张威威, 孙楠楠, 等. 矮壮素对银杏叶片光合代谢与萜内酯生物合成的影响[J]. 园艺学报, 2011,38(12):2253-2260.
XU F, ZHANG W W, SUN N N, et al. Effects of chlorocholine chloride on photosynjournal metabolism and terpene trilactones biosynjournal in the leaf of Ginkgo biloba[J]. Acta Horticulturae Sinica, 2011,38(12):2253-2260. DOI: 10.16420/j.issn.0513-353x.2011.12.033.
[22]
闫艳红, 万燕, 杨文钰, 等. 叶面喷施烯效唑对套作大豆花后碳氮代谢及产量的影响[J]. 大豆科学, 2015,34(1):75-81.
YAN Y H, WAN Y, YANG W Y, et al. Effect of spraying uniconazole on carbon and nitrogen metabolism and yield of relay strip intercropping soybean[J]. Soybean Science, 2015,34(1):75-81.
[23]
杨丽芝, 潘春霞, 邵珊璐, 等. 多效唑和干旱胁迫对毛竹实生苗活力、光合能力及非结构性碳水化合物的影响[J]. 生态学报, 2018,38(6):2082-2091.
YANG L Z, PAN C X, SHAO S L, et al. Effects of PP333 and drought stress on the activity, photosynthetic characteristics, and non-structural carbohydrates of Phyllostachys edulis seedlings[J]. Acta Ecologica Sinica, 2018,38(6):2082-2091.
[24]
郭素娟, 熊欢, 李广会, 等. 树体结构对板栗冠层光辐射与光合特征及产量的影响[J]. 东北林业大学学报, 2014,42(1):14-18. DOI: 10.13759/j.cnki.dlxb.2014.01.004.
GUO S J, XIONG H, LI G H, et al. Effect of chestnut(Castanea mollissima Bl.) tree structure on canopy light radiation, photosynjournal and yield[J]. Journal of Northeast Forestry University, 2014,42(1):14-18. DOI: 10.13759/j.cnki.dlxb.2014.01.004.
[25]
郑江蓉, 邓玉林, 李春艳, 等. 不同生长调节物质对板栗幼树生长的影响[J].西南林学院学报, 2006(6):33-36.
ZHENG J R, DENG Y L, LI C Y, et al. Experiment on effect of different plant growth regulators on growth of Castanea mollissima saplings[J]. Journal of Southwest Forestry College, 2006(6):33-36. DOI: 10.3969/j.issn.2095-1914.2006.06.009.
[26]
郑瑞杰, 王德永, 于冬梅. 多效唑对日本栗生长和产量的影响[J]. 北方园艺, 2010(7):31-33.
ZHENG R J, WANG D Y, YU D M. Effects on growth and yeild of Japanese chestnut by spraying PP333[J]. Northern Horticulture, 2010(7):31-33.
[27]
杜荻, 郭素娟, 仇新玮, 等. 理化处理诱导板栗芽苗胚轴增粗的效应[J]. 西北林学院学报, 2017,32(4):106-110.
DU D, GUO S J, QIU X W, et al. Enlargement effects physicochemical treatments on bud-stock hypocotyls of Chinese chestnut[J]. Journal of Northwest Forestry University, 2017,32(4):106-110. DOI: 10.3969/j.issn.1001-7461.2017.04.18.
[28]
王丽媛, 郭素娟. 2种植物生长调节剂对板栗叶片生理特性的影响[J]. 西南农业学报, 2016,29(2):266-269.
WANG L Y, GUO S J. Effect of plant growth regulators on physiological characteristics of chestnut leaves[J]. Southwest China Journal of Agricultural Sciences, 2016,29(2):266-269. DOI: 10.16213/j.cnki.scjas.2016.02.010
[29]
吴娟, 杨盼盼, 张欣, 等. 喷施多效唑和肥料对板栗叶片膜透性和保护酶活性的影响[J]. 安庆师范学院学报(自然科学版), 2016,22(2):103-105.
WU J, YANG P P, ZHANG X, et al. Effects of paclobutrazol and fertilizers on the leaf membrane permeability and protective enzyme activity in Castanea mollissima Blume[J]. Journal of Anqing Teachers College(Natural Science Edition), 2016,22(2):103-105. DOI: 10.13757/j.cnki.cn34-1150/n.2016.02.025.
[30]
杜尧, 韩轶, 王传宽. 干旱对兴安落叶松枝叶非结构性碳水化合物的影响[J]. 生态学报, 2014,34(21):6090-6100.
DU Y, HAN Y, WANG C K. The influence of drought on non-structural carbohydrates in the needles and twigs of Larix gmelinii[J]. Acta Ecologica Sinica, 2014,34(21):6090-6100. DOI: 10.5846/stxb201401260198.
[31]
蒋思思, 魏丽萍, 杨松, 等. 不同种源油松幼苗的光合色素和非结构性碳水化合物对模拟氮沉降的短期响应[J]. 生态学报, 2015,35(21):7061-7070.
JIANG S S, WEI L P, YANG S, et al. Short term responses of photosynthetic pigments and nonstructural carbohydrates to simulated nitrogen deposition in three provenances of Pinus tabulaeformis Carr.seedlings[J]. Acta Ecologica Sinica, 2015,35(21):7061-7070.
[32]
潘瑞炽, 王小菁, 李娘辉. 植物生理学[M]. 北京: 高等教育出版社, 2012: 189-216.
PAN R C, WANG X J, LI N H. Plant physiology [M]. Beijing: Higher Education Press, 2012: 189-216.
[33]
FROST R G, WEST C A. Properties of kaurene synthetase from Marah macrocarpus[J]. Plant Physiology, 1977,59(1):22-29. DOI: 10.1104/pp.59.1.22.
[34]
张丹丹, 范俊俊, 赵明明, 等. 外施植物生长调节剂对细柄阿丁枫扦插生根的影响[J]. 南京林业大学学报(自然科学版), 2018,42(1):41-47.
ZHANG D D, FAN J J, ZHAO M M, et al. Effects of plant growth regulator on cuttings rooting of Altingia gracilipessl[J]. J Nanjing For Univ(Nat Sci Ed), 2018,42(1):41-47.DOI: 10.3969/j.issn.1000-2006.201709057.
[34]
房增国, 赵秀芬, 高祖明. 多效唑提高植物抗逆性的研究进展[J]. 中国农业科技导报, 2005,7(4):9-12.
FANG Z G, ZHAO X F, GAO Z M. Research progress of plant stress resistance improvement applying paclobutrazol[J]. Review of China Agricultural Science and Technology, 2005,7(4):9-12.
[36]
王希波, 梁欢, 肖康飞, 等. 植物生长延缓剂对西瓜砧木和嫁接苗质量的影响[J]. 中国蔬菜, 2016(2):35-39.
WANG X B, LIANG H, XIAO K F, et al. Effects of plant growth retardant on quality of rootstock and grafted watermelon seedlings[J]. China Vegetables, 2016(2):35-39. DOI: 10.3969/j.issn.1000-6346.2016.02.008.
[37]
郑云普, 王贺新, 娄鑫, 等. 木本植物非结构性碳水化合物变化及其影响因子研究进展[J]. 应用生态学报, 2014,25(4):1188-1196.
ZHENG Y P, WANG H X, LOU X, et al. Changes of non-structural carbohydrates and its impact factors in trees: a review[J]. Chinese Journal of Applied Ecology, 2014,25(4):1188-1196. DOI: 10.13287/j.1001-9332.2014.0110.
[38]
崔旭盛, 郑雷, 杜友, 等. 植物生长调节物质对梭梭和肉苁蓉生长的调节作用[J]. 中国农业大学学报, 2013,18(5):83-89.
CUI X S, ZHENG L, DU YOU, et al. Effect of plant growth regulators on the growth of Haloxylon ammodendron and Cistanche deserticola[J]. Journal of China Agricultural University, 2013,18(5):83-89.
[39]
吕茹冰, 杜莹, 鲍永新, 等. 氮沉降对毛竹非结构性碳组成与分配的影响[J]. 生态学杂志, 2017,36(3):584-591.
LV R B, DU Y, BAO Y X, et al. Effects of simulated nitrogen deposition on the composition and allocation of non-structural carbohydrates of Phyllostachys edulis[J]. Chinese Journal of Ecology, 2017,36(3):584-591. DOI: 10.13292/j.1000-4890.201703.032.

基金

国家重点研发计划(2019YFD1001604)
国家林业公益性行业科研专项重大项目(201204401)
“十二五”国家科技支撑计划(2013BAD14B0402)

编辑: 王国栋

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(2290 KB)

Accesses

Citation

Detail

段落导航
相关文章

/