[落羽杉×墨西哥落羽杉(墨杉)]×墨杉回交子代扦插生根性状的遗传变异及QTL定位

杨颖, 段豪, 郭金博, 王紫阳, 施钦, 宣磊, 於朝广

南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (3) : 49-57.

PDF(2201 KB)
PDF(2201 KB)
南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (3) : 49-57. DOI: 10.3969/j.issn.1000-2006.201904039
研究论文

[落羽杉×墨西哥落羽杉(墨杉)]×墨杉回交子代扦插生根性状的遗传变异及QTL定位

作者信息 +

Genetic variation and QTL analysis of rooting traits of backcross progenies of(Taxodium distichum×T. mucronatum)×T. mucronatum hardwood cuttings steckling

Author information +
文章历史 +

摘要

目的

探索中山杉硬枝扦插生根性状的遗传规律及机理,指导中山杉的育种实践。

方法

在[落羽杉×墨西哥落羽杉(墨杉)]×墨杉高密度遗传图谱的基础上对回交(BC1)子代硬枝扦插苗每穗生根率、发根数、根长(最长根长、次长根长、第3根长及前3根平均根长)、最大根粗、抽梢长度、抽梢地径9个硬枝扦插生根性状进行遗传分析及数量性状基因座(QTL)定位。

结果

9个指标在子代中的遗传变异系数为31.14%~63.67%。 7个指标成功定位到7个QTL区间,包括每穗根长(最长根长、次长根长、第3根长及前3根平均根长)相关的3个QTL,生根率的2个QTL,发根数和抽梢地径分别定位到1个QTL,7个主效QTL的置信区间为0~2.784 cM,似然函数比值的对数值为2.01~4.51,可解释的表型变异为4.24%~12.78%。利用生物信息学分析预测了主效QTL区间内的候选基因。

结论

生根率和不定根长度在BC1子代中遗传变异显著,且与几个高强度的主效QTL相关,分子标记辅助育种应用于这两个性状的选择改良有较高的潜力。

Abstract

Objective

Explore the genetic variations and mechanism of rooting traits of hardwood cuttings stecklings of Taxodium ‘Zhongshanshan’ and guide breeding practices.

Method

One-year-old lignified hardwood was harvested from 130 backcross(BC1)strains for hardwood cutting, and 1 672 stecklings were achieved the next year. Nine rooting-related growth traits, i.e. rooting rate, number of adventitious roots, root length (the longest root length, the second root length, the third root length and average root length of the first three roots), the diameter of the largest root, shoot length and shoot diameter of BC1 progenies were measured. The variation law, genetic variation coefficient and the correlations among the growth traits were analyzed. Besides, the rooting ability of the 117 lines was classified according to the subordinate function values. QTL (quantitative trait loci) analysis was conducted based on the high-density genetic map of (T. distichum × T. mucronatum) ×T. mucronatum using the rQTL method. Finally, to obtain the information of candidate genes in the main QTL interval, the 2 × 100 bp sequence information of each specific-locus amplified fragment (SLAF) marker within the major QTLs was blasted with transcriptome database.

Result

Except for the shoot diameter, the variation of the other eight phenotypic indices in BC1 population basically conformed to the normal distribution. All the 9 growth traits were widely separated. The variation range of genetic variation coefficient was 31.14%?63.67%. The variation coefficient of shoot length was the largest, followed by the rooting rate (54.61%), and the variation range of rooting rate among individuals was 3%?73%. A significant positive correlation was found between two of the diameters of the largest root, the longest root length, the second root length, the third root length, the average root length of the first three roots, the shoot diameter and the shoot length, that is, there was a significant correlation between the radial and longitudinal growth traits of the adventitious roots and shoots. However, there was no significant correlation between rooting rate and number of the adventitious roots with other growth traits. The 117 BC1 lines were divided into 4 groups based on the cluster result of subordinate function values. Forty seven lines were of low rooting ability type, 33 lines were of relatively low rooting ability type, 19 lines were of relatively high rooting ability type and 18 lines were of high rooting ability type. Seven major QTLs with logarithm of odds (LOD) values ≥2 located on 6 linkage groups (LG3, LG4, LG8, LG9, LG10 and LG11) were identified for the 9 growth traits, except for the diameter of the largest root and shoot diameter, and 102 SLAF markers were included. The longest root length, the second root length, the third root length and the average root length of the first three roots shared similar LOD profiles. The confidence interval of the 7 major QTLs ranged from 0 to 2.784 cM, the LOD ranged from 2.01 to 4.51, and the phenotypic variation explained (PVE) ranged from 4.24% to 12.78%. For the PVE of single QTL, the order was q3-1 (12.78%)>q10-1 (12.05%)>q4-1 (8.72%)>q9-1 (6.91%)>q11-1 (6.68%)>q3-1 (5.07%)>q8-1 (4.53%). The highest values were associated with root length and rooting rate, both of which were above 12%. Unanimously, for the cumulative PVE of total QTLs, QTLs of root length were the highest with QTLs (q3-1, q8-1 and q9-1) that totally explained 24.22% of phenotypic variation. The second was rooting rate, with two major QTLs (q3-2 and q10-1) that totally explained 17.12% of phenotypic variation. Thus, there were several strong QTLs controlling a large proportion of the genetic variation of rooting rate and root length in Taxodium. Only one QTL (q4-1) was located for number of the adventitious roots, and the PVE was 8.72%. One QTL (q11-1) was located for shoot diameter with 6.68% PVE value. Only q4-1 had a negative additive effect, and all the other six QTLs had positive additive effects. Among the 102 SLAF markers within QTLs, 25 had a high match with unigenes in transcriptome, among which encoding Ty1-copia long terminal repeat, ubiquitin binding enzyme, leucine-rich repeat extensin and GDSL lipase genes were identified, all of which participate in the root development of plants.

Conclusion

The genetic variations of rooting rate and adventitious root length were both significant in the BC1 population, besides, they were both related to several strong QTLs. Thus, it is of high potential for the application of molecular marker assisted breeding in the selection and improvement of these two traits in T. ‘Zhongshanshan’.

关键词

落羽杉属 / 中山杉 / 扦插苗 / 生根 / 数量性状基因座(QTL) / SLAF标记

Key words

Taxodium / Taxodium ‘Zhongshanshan’ / steckling / rooting / quantitative trait locus (QTL) / SLAF marker

引用本文

导出引用
杨颖, 段豪, 郭金博, 王紫阳, 施钦, 宣磊, 於朝广. [落羽杉×墨西哥落羽杉(墨杉)]×墨杉回交子代扦插生根性状的遗传变异及QTL定位[J]. 南京林业大学学报(自然科学版). 2020, 44(3): 49-57 https://doi.org/10.3969/j.issn.1000-2006.201904039
YANG Ying, DUAN Hao, GUO Jinbo, WANG Ziyang, SHI Qin, XUAN Lei, YU Chaoguang. Genetic variation and QTL analysis of rooting traits of backcross progenies of(Taxodium distichum×T. mucronatum)×T. mucronatum hardwood cuttings steckling[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2020, 44(3): 49-57 https://doi.org/10.3969/j.issn.1000-2006.201904039
中图分类号: S722   

参考文献

1 刘艳.论长江中下游中山杉的栽培与管理[J].现代园艺,2013(10):22,24.
1 LIU Y. Cultivation and management of Taxodium ‘Zhongshanshan’ in the middle and lower reaches of the Yangtze River[J].Xiandai Horticulture,2013(10):22,24.DOI:10.14051/j.cnki.xdyy.2013.10.157.
2 殷云龙,於朝广,华建峰.‘中山杉’的选育和利用及相关研究进展[J].植物资源与环境学报,2019,28(4):99-106.
2 YIN Y L,YU C G,HUA J F.Breeding, utilization and related research progress of Taxodium ‘Zhongshanshan ’[J].Journal of Plant Resources and Environment,2019,28(4):99-106.DOI:10.3969/j.issn.1674-7895.2019.04.11.
3 袁贵明.浅谈中山杉扦插繁殖技术[J].现代园艺,2011(15):43.
3 YUAN G M.Discussion on cutting propagation technique of Taxodium ‘Zhongshanshan’[J].Xiandai Horticulture,2011(15):43. DOI:10.14051/j.cnki.xdyy.2011.15.091.
4 张琳,郭丽丽,郭大龙,等.牡丹杂交F1代性状分离规律及混合遗传分析[J].南京林业大学学报(自然科学版),2018,42(6):51-60.
4 ZHANG L,GUO L L,GUO D L,et al.Separation analysis and mixed genetic analysis of phenotypic traits in F1 progenies of tree peony[J].J Nanjing For Univ(Nat Sci Ed),2018,42(6):51-60.DOI:10. 3969/j.issn.1000-2006. 201712034.
5 MURANTY H, JORGE V, BASTIEN C, et al. Potential for marker???assisted selection for forest tree breeding: lessons from 20 years of MAS in crops[J]. Tree Genetics & Genomes, 2014, 10(6): 1491-1510. doi:10.1007/s11295-014-0790-5.
6 MORIYA S,IWANAMI H,HAJI T,et al.Identification and genetic characterization of a quantitative trait locus for adventitious rooting from apple hardwood cuttings[J].Tree genetics & Genomes,2015,11(3):59.DOI:10.1007/s11295-015-0883-9.
7 SHEPHERD M,HUANG S W,EGGLER P,et al.Congruence in QTL for adventitious rooting in Pinus elliottii?×?Pinus caribaea hybrids resolves between and within?species effects[J]. Mol Breeding,2006,18(1):11-28.DOI:10.1007/s11032-006-906-5.
8 SHEPHERD M,KASEM S,LEE D J,et al.Mapping species differences for adventitious rooting in a Corymbia torelliana × Corymbia citriodora subspecies variegata hybrid[J].Tree Genetics & Genomes ,2008,4(4):715-725.DOI:10.1007/s11295-008-0145-1.
9 韩路弯,华建峰,刘江,等.不同基质和扦插时间对‘中山杉118’插条生根的影响[J].亚热带植物科学,2015,44(2):150-153.
9 HAN L W,HUA J F,LIU J,et al.Effects of different cutting medium and cutting time on rooting of cutting of Taxodium hybrid ‘Zhongshanshan 118’[J].Subtropical Plant Science,2015,44(2):150-153.DOI:10.3969/j.issn.1009-7791. 2015. 02.013.
10 徐建华,胡李娟,殷云龙,等.不同栽培基质对4个杂交墨西哥落羽杉无性系扦插苗的影响[J].植物资源与环境学报,2013,22(2):114-116.
10 XU J H,HU L J,YIN Y L,et al.Effect of different substrates on cutting seedlings of four clones of Taxodium mucronatum hybrids[J].Journal of Plant Resources and Environment,2013,22(2):114-116.DOI:10.3969/j.issn.1674-7895.2013.02.17.
11 张忠镇,李倩茹,张树军,等.中山杉嫩枝扦插繁育技术研究[J].山东林业科技,2015,45(4):50-53.
11 ZHANG Z Z,LI Q R,ZHANG S J,et al. Study on cutting breeding technique of Taxodium ‘Zhongshanshan’[J].Journal of Shandong Forestry Science and Technology,2015,45(4):50-53.DOI:10.3969/j.issn.1002-2724.2015.04.012.
12 靳诚.中山杉无性系扦插繁殖技术的研究[D].南京:南京林业大学,2007.
12 JIN C.Studies on the propagative technology of ‘Zhongshanshan’ clones[D].Nanjing:Nanjing Forestry University,2007.
13 王紫阳,徐建华,李火根,等.中山杉优良无性系302,118,405扦插生根能力比较[J].浙江农林大学学报,2015,32(4):648-654.
13 WANG Z Y,XU J H,LI H G,et al.Rooting capabilities for Taxodium ‘Zhongshanshan’ 302,118,and 405[J].Journal of Zhejiang A&F University,2015,32(4):648-654.DOI:10.11833/j.issn.2095-0756.2015.04.023.
14 李乃伟,陆小清,王传永,等.中山杉9号的扦插繁殖技术研究[J].黑龙江农业科学,2015(1):88-90.
14 LI N W,LU X Q,WANG C Y,et al.Research on propagation technique of Taxodium ‘Zhongshansa 9’[J].Heilongjiang Agricultural Sciences,2015(1):88-90.DOI:10.11942/j.issn1002-2767. 2015.01.0088.
15 YANG Y,XUAN L,YU C, et al. High?density genetic map construction and quantitative trait loci identification for growth traits in (Taxodium distichum var. distichum × T. mucronatum) × T. mucronatum[J]. BMC Plant Biology, 2018, 18(1): 263.DOI: 10.1186/s12870-018-1493-0.
16 BROMAN K W,WU H,SEN S,et al.R/qtl:QTL mapping in experimental crosses[J].Bioinformatics,2003,19(7):889-890.DOI:10.1093/bioinformatics/btg112.
17 杨柳,师臣,田中艳,等.大豆胞囊线虫病3号生理小种抗性QTL定位的研究[J].大豆科学,2010,29(2):215-217.
17 YANG L,SHI C,TIAN Z Y,et al.Mapping QTL associated with resistance to soybean cyst nematode race 3 in cultivar ‘Kangxian 2’[J].Soybean Science,2010,29(2):215-217.
18 程利国.大豆遗传图谱构建和重要性状的QTL定位[D].南京:南京农业大学,2008.CHENG L G.Construction of genetic linkage map and QTL mapping of important traits in soybean[Glycine max(L.) Merrill][D].Nanjing:Nanjing Agricultural University,2008.
19 ALTSCHUL S.Gapped BLAST and PSI?BLAST:a new generation of protein database search programs[J].Nucleic Acids Research,1997,25(17):3389-3402.DOI:10.1093/nar/25.17. 3389.
20 WANG Z Q,HUA J F,YIN Y L,et al.An integrated transcriptome and proteome analysis reveals putative regulators of adventitious root formation in Taxodium ‘Zhongshanshan’[J].International Journal of Molecular Sciences,2019,20(5):1225.DOI:10.3390/ijms20051225.
21 ZHANG D, LI H, WANG J, et al. High?density genetic mapping identifies new major loci for tolerance to low?phosphorus stress in soybean[J]. Frontiers in Plant Science,2016(7):e372.DOI:10.3389/fpls.2016.00372 .
22 POUTEAU S,HUTTNER E,GRANDBASTIEN M A,et al.Specific expression of the tobacco Tnt1 retrotransposon in protoplasts[J].The EMBO Journal ,1991,10(7):1911-1918.DOI:10.1002/j.1460-2075.1991.tb07717.x.
23 梁琳琳,周明兵.植物活性长末端重复序列反转录转座子研究进展[J].生物工程学报,2016,32(4):409-429.
23 LIANG L L,ZHOU M B.Plant active LTR retrotransposons:a review[J].Chinese Journal of Biotechnology,2016,32(4):409-429.DOI:10.13345/j.cjb.150279.
24 WEN R,WANG S,XIANG D Q,et al.UBC13,an E2 enzyme for Lys63?linked ubiquitination,functions in root development by affecting auxin signaling and Aux/IAA[J]. The Plant Journal,2014,80(3):424-436. DOI:10.1111/tpj.12644.
25 BAUMBERGER N.The chimeric leucine?rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana[J].Genes & Development,2001,15(9):1128-1139.DOI:10.1101/gad.200201.
26 LAI C P,HUANG L M,CHEN L F O,et al.Genome?wide analysis of GDSL?type esterases/lipases in Arabidopsis[J].Plant Molecular Biology,2017,95(1/2):181-197.DOI:10.1007/s11103-017-0648-y.
27 HAJI T. Identification and genetic characterization of a quantitative trait locus for adventitious rooting from apple hardwood cuttings[J]. Tree Genetics & Genomes, 2015,11(3):1-11.DOI:10.1007/s11295-015-0883-9.

基金

国家自然科学基金项目(31700588);江苏省自然科学基金项目(BK20160601);江苏省植物资源研究与利用重点实验室项目(JSPKLB201842)

PDF(2201 KB)

Accesses

Citation

Detail

段落导航
相关文章

/