碳氮比改变对崇明东滩湿地反硝化与硝态氮氨化的影响

王新新, 韩建刚, 徐传红, 徐莎

南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (5) : 174-180.

PDF(1570 KB)
PDF(1570 KB)
南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (5) : 174-180. DOI: 10.3969/j.issn.1000-2006.201904052
研究论文

碳氮比改变对崇明东滩湿地反硝化与硝态氮氨化的影响

作者信息 +

Effects of $C/NO_{3}^{-}-N$ change on denitrification and dissimilatory nitrate reduction to ammonium in the Chongming Dongtan wetland

Author information +
文章历史 +

摘要

【目的】分析自然和人为活动加速影响下沿海湿地土壤碳氮比变化对硝态氮还原过程的影响。【方法】以崇明东滩典型滨海湿地为例,采集4种不同覆被类型下沉积物样品,添加C6H12O6或KNO3溶液,使沉积物有机碳与硝态氮比例($C/NO_3^--N$)增大30%和减小30%,借助 15N同位素稀释技术,研究反硝化(Den)与硝态氮氨化(DNRA)的变化特征。【结果】$C/NO_3^--N$的升高或降低均引起芦苇和互花米草覆被下沉积物Den和DNRA速率的显著下降(P<0.05)。芦苇覆被下Den速率从原土的10.1 μg/(kg·h)降至1.0~3.1 μg /(kg·h),互花米草覆被下Den速率从原土的3.4 μg /(kg·h)降至0.3~0.4 μg /(kg·h)。相比较而言,芦苇植被下DNRA速率从原土的21.9 μg /(kg·h)降至12.7~14.5 μg /(kg·h),互花米草覆被下从原土的42.6 μg /(kg·h)降至3.1~5.8 μg /(kg·h)。【结论】4种覆被下沉积物DNRA/Den值均大于1,表明DNRA是湿地硝态氮还原的主要途径。与$C/NO_3^--N$减小相比,$C/NO_3^--N$增大使$NO_3^--N$的还原更趋向DNRA过程。崇明东滩湿地$C/NO_3^--N$的波动(±30%)可能并不会导致沉积物N2O排放的显著增加。

Abstract

【Objective】 Fluctuations in the ratio of carbon and nitrogen in the wetland soil have an important impact on the nitrate nitrogen reductions under the influence of accelerated natural and human activities. 【Method】 Sediment samples were collected under four vegetation types in the Chongming Dongtan wetland. The ratio of organic carbon to nitrate ($C/NO_3^--N$) in sediments was adjusted to increase or decrease by 30% by adding C6H12O6 or KNO3 solution, respectively. The 15N isotope dilution technique was used to define the changes in denitrification (Den) and dissimilatory nitrate reduction to ammonium (DNRA). 【Result】 The results showed that the increase or decrease in $C/NO_3^--N$ caused a significant decrease in the rates of Den and DNRA in the sediments under Phragmites australis and Spartina alterniflora (P < 0.05). The Den rate under P. australis decreased from 10.1 μg/(kg·h) (CK) to 1.0-3.1 μg/(kg·h), whereas under S. alterniflora, it decreased from 3.4 μg/(kg·h) (CK) to 0.3-0.4 μg/(kg·h). In contrast, the DNRA rate decreased from 21.9 μg/(kg·h) (CK) to 12.7-14.5 μg/(kg·h) under P. australis, and for S. alterniflora, it decreased from 42.6 μg/(kg·h) (CK) to 3.1-5.8 μg/(kg·h). This indicates that the impact of changes in $C/NO_3^--N$ on nitrate reduction should be considered in the assessment of N2O emissions in the wetland. Particularly, the sediments under P. australis had a higher denitrification rate, whereas the DNRA rate under S. alterniflora was higher. 【Conclusion】 This study showed an essential difference in nitrate utilization between the two vegetation types. All DNRA/Den value under the four vegetation types were greater than 1, indicating that DNRA is the main pathway for nitrate reduction in the wetland. Compared with the decrease in $C/NO_3^--N$, the increase in $C/NO_3^--N$ resulted in the nitrate reduction in sediments being biased toward the DNRA process. Therefore, the fluctuations in $C/NO_3^--N$ in the Chongming Dongtan wetland (± 30%) may not cause a significant increase in N2O emissions from sediments.

关键词

湿地 / 土壤碳氮比 / 反硝化 / 硝态氮氨化 / 15N同位素 / N2O排放 / 崇明岛

Key words

wetland / the ratio of carborn to nitrogen / denitrification (Den) / dissimilatory nitrate reduction to ammonium (DNRA) / 15N / N2O emission / Chongming Island

引用本文

导出引用
王新新, 韩建刚, 徐传红, . 碳氮比改变对崇明东滩湿地反硝化与硝态氮氨化的影响[J]. 南京林业大学学报(自然科学版). 2020, 44(5): 174-180 https://doi.org/10.3969/j.issn.1000-2006.201904052
WANG Xinxin, HAN Jiangang, XU Chuanhong, et al. Effects of $C/NO_{3}^{-}-N$ change on denitrification and dissimilatory nitrate reduction to ammonium in the Chongming Dongtan wetland[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2020, 44(5): 174-180 https://doi.org/10.3969/j.issn.1000-2006.201904052
中图分类号: S156.8   

参考文献

[1]
殷士学 . 淹水土壤中硝态氮异化还原成铵过程的研究[D]. 南京:南京农业大学, 2000.
YIN S X . Dissimilatory nitrate reduction to ammonium in submerged soils[D]. Nanjing:Nanjing Agricultural University, 2000.
[2]
徐继荣, 王友绍, 殷建平 , 等. 珠江口入海河段DIN形态转化与硝化和反硝化作用[J]. 环境科学学报, 2005,25(5):686-692.
摘要
在自广州中大码头(ST1)沿珠江主航道到虎门外的龙穴水道(ST9)之间设9个采样站,其中ST2、ST5、ST9号3个为沉积物采样站,研究珠江口入海河段溶解态无机氮形态转化与硝化和反硝化作用.水质分析和培养结果表明,水体中存在着强烈的硝化作用.从ST1到ST9站约有88%的NH4+转化成了NO3-和NO2-.NH4+与NO3-含量之间呈显著的负相关关系,相关系数R=-0.9(n=19).NO3-的变化趋势与其它要素相反,沿入海方向逐渐升高.珠江水相中的N2O的浓度范围在5~329 nmol·L-1,饱和度在64%~4134%之间,是N2O的一个重要排放源.采用乙炔抑制法研究微生物作用下发生在沉积物中的硝化、反硝化作用,结果显示,沉积物中存在着强烈的硝化与反硝化作用,硝化速率:0.32~2.43 mmol·m-2·h-1;反硝化速率:0.03~0.84mmol·m-2·h-1;硝酸盐的还原速率:4.1~13.06 mmol·m-2·h-1.硝化与反硝化作用主要发生在沉积物的0~4 cm的区域,各站点由于沉积物性状不同而有所差异.硝化和反硝化速率与沉积物中NO3-和NH4+的含量和Eh值等性质及水相中的DO浓度有关.
XU J R, WANG Y S, YIN J P , et al. Transformation of dissolved inorganic nitrogen species and nitrigication and denitrification processes in the near sea section of Zhujiang River[J]. Acta Sci Circumstantiae, 2005,25(5):686-692. DOI: 10.13671/j.hjkxxb.2005.05.021.
[3]
王万忠, 饶磊, 王沛芳 , 等. 河流护岸多孔生态材料对水体中硝态氮去除试验[J]. 水资源保护, 2018,34(1):58-63.
WANG W Z, RAO L, WANG P F , et al. Experiment of porous ecological material of river revetment on removal of nitrate nitrogen in water[J]. Water Resources Protection, 2018,34(1):58-63.
[4]
杨柳燕, 王楚楚, 孙旭 , 等. 淡水湖泊微生物硝化反硝化过程与影响因素研究[J]. 水资源保护, 2016,32(1):12-22.
YANG L Y, WANG C C, SUN X , et al. Study on microbial nitrification and denitrification processes and influence factors in freshwater lakes[J]. Water Resources Protection, 2016,32(1):12-22.
[5]
蔡延江, 丁维新, 项剑 . 土壤N2O和NO产生机制研究进展[J]. 土壤, 2012,44(5):712-718.
CAI Y J, DING W X, XIANG J . Mechanisms of nitrous oxide and nitric oxide production in soils:a review[J]. Soils, 2012,44(5):712-718. DOI: 10.13758/j.cnki.tr.2012.05.001.
[6]
邓焕广, 张智博, 张菊 , 等. 东鱼河春季沉积物反硝化脱氮作用与N2O排放研究[J]. 水土保持学报, 2019,33(1):283-287.
DENG H G, ZHANG Z B, ZHANG J , et al. Denitrification and N2O emission in sediments of Dongyu River in spring[J]. J Soil Water Conserv, 2019,33(1):283-287. DOI: 10.13870/j.cnki.stbcxb.2019.01.044.
[7]
韦宗敏 . 微好氧环境中硝酸盐异化还原成铵的影响研究[D]. 广州:华南理工大学, 2012.
WEI Z M . Preliminary research on dissimilatory nitrate reduction to ammonium in microaerobic condition[D]. Guangzhou:South China University of Technology, 2012.
[8]
ZHANG W J, ZHANG Y, SU W T , et al. Effects of cathode potentials and nitrate concentrations on dissimilatory nitrate reductions by Pseudomonas alcaliphila in bioelectrochemical systems[J]. J Environ Sci, 2014,26(4):885-891. DOI: 10.1016/S1001-0742(13)60460-X.
[9]
ZHANG J B, LAN T , MÜLLER C,et al.Dissimilatory nitrate reduction to ammonium (DNRA) plays an important role in soil nitrogen conservation in neutral and alkaline but not acidic rice soil[J]. J Soils Sediments, 2015,15(3):523-531. DOI: 10.1007/s11368-014-1037-7.
[10]
KUYPERS M M M, MARCHANT H K, KARTAL B . The microbial nitrogen-cycling network[J]. Nat Rev Microbiol, 2018,16(5):263-276. DOI: 10.1038/nrmicro.2018.9.
Nitrogen is an essential component of all living organisms and the main nutrient limiting life on our planet. By far, the largest inventory of freely accessible nitrogen is atmospheric dinitrogen, but most organisms rely on more bioavailable forms of nitrogen, such as ammonium and nitrate, for growth. The availability of these substrates depends on diverse nitrogen-transforming reactions that are carried out by complex networks of metabolically versatile microorganisms. In this Review, we summarize our current understanding of the microbial nitrogen-cycling network, including novel processes, their underlying biochemical pathways, the involved microorganisms, their environmental importance and industrial applications.
[11]
MA H B, AELION C M . Ammonium production during microbial nitrate removal in soil microcosms from a developing marsh estuary[J]. Soil Biol Biochem, 2005,37(10):1869-1878. DOI: 10.1016/j.soilbio.2005.02.020.
[12]
HERBERT R A . Nitrogen cycling in coastal marine ecosystems[J]. FEMS Microbiol Rev, 1999,23(5):563-590. DOI: 10.1016/S0168-6445(99)00022-4.
[13]
陈怀璞, 张天雨, 葛振鸣 , 等. 崇明东滩盐沼湿地土壤碳氮储量分布特征[J]. 生态与农村环境学报, 2017,33(3):242-251.
CHEN H P, ZHANG T Y, GE Z M , et al. Distribution of soil carbon and nitrogen stocks in salt marsh wetland in Dongtan of Chongming[J]. J Ecol Rural Environ, 2017,33(3):242-251. DOI: 10.11934/j.issn.1673-4831.2017.03.007.
[14]
宋大平, 左强, 刘本生 , 等. 农业面源污染中氮排放时空变化及其健康风险评价研究:以淮河流域为例[J]. 农业环境科学学报, 2018,37(6):1219-1231.
SONG D P, ZUO Q, LIU B S , et al. Estimation of spatio-temporal variability and health risks of nitrogen emissions from agricultural non-point source pollution:a case study of the Huaihe River basin,China[J]. J Agro-Environ Sci, 2018,37(6):1219-1231. DOI: 10.11654/jaes.2017-1374.
[15]
万晓红, 王雨春, 陆瑾 , 等. 白洋淀湿地氮素转化和N2O排放特征研究[J]. 水利学报, 2009,40(10):1168-1174.
WAN X H, WANG Y C, LU J , et al. Study on nitrogen transformation and N2O emission flux in Baiyangdian wetland[J]. J Hydraul Eng, 2009,40(10):1168-1174. DOI: 10.13243/j.cnki.slxb.2009.10.001.
[16]
胡泓 . 长江口芦苇湿地温室气体排放通量及影响因素研究[D]. 上海:华东师范大学, 2014.
HU H . Greenhouse gases fluxes at Yangtze estuary Phragmites australis wetland and the influencing factors[D]. Shanghai:East China Normal University, 2014.
[17]
LAVERMAN A M, CANAVAN R W, SLOMP C P , et al. Potential nitrate removal in a coastal freshwater sediment (Haringvliet Lake,the Netherlands) and response to salinization[J]. Water Res, 2007,41(14):3061-3068. DOI: 10.1016/j.watres.2007.04.002.
Nitrogen transformations and their response to salinization were studied in bottom sediment of a coastal freshwater lake (Haringvliet Lake, The Netherlands). The lake was formed as the result of a river impoundment along the south-western coast of the Netherlands, and is currently targeted for restoration of estuarine conditions. Nitrate porewater profiles indicate complete removal of NO(3)(-) within the upper few millimeters of sediment. Rapid NO(3)(-) consumption is consistent with the high potential rates of nitrate reduction (up to 200 nmol N cm(-3) h(-1)) measured with flow-through reactors (FTRs) on intact sediment slices. Acetylene-block FTR experiments indicate that complete denitrification accounts for approximately half of the nitrate reducing activity. The remaining NO(3)(-) reduction is due to incomplete denitrification and alternative reaction pathways, most likely dissimilatory nitrate reduction to NH(4)(+) (DNRA). Results of FTR experiments further indicate that increasing bottom water salinity may lead to a transient release of NH(4)(+) and dissolved organic carbon from the sediment, and enhance the rates of nitrate reduction and nitrite production. Increased salinity may thus, at least temporarily, increase the efflux of NH(4)(+) from the sediment to the surface water. This work shows that salinity affects the relative importance of denitrification compared to alternative nitrate reduction pathways, limiting the ability of denitrification to remove bioavailable nitrogen from aquatic ecosystems.
[18]
YIN S X, CHEN D, CHEN L M , et al. Dissimilatory nitrate reduction to ammonium and responsible microorganisms in two Chinese and Australian paddy soils[J]. Soil Biol Biochem, 2002,34(8):1131-1137. DOI: 10.1016/S0038-0717(02)00049-4.
[19]
葛潇霄, 田昆, 郭雪莲 , 等. 氮输入对纳帕海沼泽湿地土壤氨挥发和反硝化的影响[J]. 生态环境学报, 2011,20(12):1846-1852.
GE X X, TIAN K, GUO X L , et al. Effects of nitrogen input on marsh wetland soil ammonia volatilization and denitrification in Napahai[J]. Ecol Environ Sci, 2011,20(12):1846-1852. DOI: 10.16258/j.cnki.1674-5906.2011.12.026.
[20]
SCHMIDT C S, RICHARDSON D J, BAGGS E M . Constraining the conditions conducive to dissimilatory nitrate reduction to ammonium in temperate arable soils[J]. Soil Biol Biochem, 2011,43(7):1607-1611. DOI: 10.1016/j.soilbio.2011.02.015.
[21]
FAZZOLARI É, NICOLARDOT B, GERMON J C . Simultaneous effects of increasing levels of glucose and oxygen partial pressures on denitrification and dissimilatory nitrate reduction to ammonium in repacked soil cores[J]. Eur J Soil Biol, 1998,34(1):47-52. DOI: 10.1016/S1164-5563(99)80006-5.
[22]
崔洪磊, 徐莎, 印杰 , 等. 植被收割对滨海湿地沉积物中CO2和N2O释放的影响[J]. 环境科学研究, 2015,28(8):1200-1208.
CUI H L, XU S, YIN J , et al. Effects of vegetation harvest on CO2 and N2O emissions from sediments in a typical coastal wetland[J]. Res Environ Sci, 2015,28(8):1200-1208. DOI: 10.13198/j.issn.1001-6929.2015.08.04.
[23]
徐莎, 陈圆, 印杰 , 等. 典型滨海湿地沉积物反硝化与硝态氮氨化相对重要性研究[J]. 南京林业大学学报(自然科学版), 2016,40(2):9-15.
XU S, CHEN Y, YIN J , et al. The relative importance of dissimilatory nitrate reduction to ammonium and denitrification in sediments in a typical coastal wetland[J]. J Nanjing For Univ (Nat Sci Ed), 2016,40(2):9-15. DOI: 10.3969/j.issn.1000-2006.2016.02.002.
[24]
印杰, 汤逸帆, 崔洪磊 , 等. 崇明东滩湿地不同植物群落下沉积物中CO2和N2O的释放动态研究[J]. 南京林业大学学报(自然科学版), 2016,40(4):29-34.
YIN J, TANG Y F, CUI H L , et al. Emissions of CO2 and N2O in sediments with different vegetation types in Chongming Dongtan wetland[J]. J Nanjing For Univ (Nat Sci Ed), 2016,40(4):29-34 DOI: 10.3969 /j.issn.1000-2006.2016.04.005.
[25]
LIU X, HAN J G, MA Z W , et al. Effect of carbon source on dissimilatory nitrate reduction to ammonium in costal wetland sediments[J]. J Soil Sci Plant Nutr, 2016(2):337-349. DOI: 10.4067/s0718-95162016005000029.
[26]
唐洪根, 周廷璋, 辛沛 . 淤积刺激下滨海湿地植物根系吸水及土壤水分变化[J/OL]. 水资源保护,2020:1-11.[ 2020- 06- 28]. http://kns.cnki.net/kcms/detail/32.1356.tv.20200210.1717.011.html.
[27]
孙建飞, 白娥, 戴崴巍 , 等. 15N标记土壤连续培养过程中扩散法测定无机氮同位素方法改进 [J]. 生态学杂志, 2014,33(9):2574-2580.
SUN J F, BAI B, DAI W W , et al. Improvements of the diffusion method to measure inorganic nitrogen isotope of 15N labeled soil [J]. Chin J Ecol, 2014,33(9):2574-2580. DOI: 10.13292/j.1000-4890.2014.0176.
[28]
贾俊仙, 李忠佩, 车玉萍 . 添加葡萄糖对不同肥力红壤性水稻土氮素转化的影响[J]. 中国农业科学, 2010,43(8):1617-1624.
JIA J X, LI Z P, CHE Y P . Effects of glucose addition on N transformations in paddy soils with a gradient of organic C content in subtropical China[J]. Sci Agric Sin, 2010,43(8):1617-1624. DOI: 10.3864/j.issn.0578-1752.2010.08.010.
[29]
LU W W, ZHANG H L, SHI W M . Dissimilatory nitrate reduction to ammonium in an anaerobic agricultural soil as affected by glucose and free sulfide[J]. Eur J Soil Biol, 2013,58:98-104. DOI: 10.1016/j.ejsobi.2013.07.003.
[30]
MATHESON F E, NGUYEN M L, COOPER A B , et al. Fate of 15N-nitrate in unplanted,planted and harvested riparian wetland soil microcosms [J]. Ecol Eng, 2002,19(4):249-264. DOI: 10.1016/S0925-8574(02)00093-9.
[31]
龙虹竹, 汪涛, 田琳琳 , 等. 川中丘陵区农业源头沟渠反硝化速率特征及其影响因素[J]. 重庆师范大学学报(自然科学版), 2016,33(4):166-172.
LONG H Z, WANG T, TIAN L L , et al. Denitrification variations and influencing factors in agriculture headwater ditch in the hilly area of Sichuan central basin[J]. J Chongqing Norm Univ (Nat Sci Ed), 2016,33(4):166-172. DOI: 10.11721/cqnuj20160402.
[32]
SOTTA E D, CORRE M D, VELDKAMP E . Differing N status and N retention processes of soils under old-growth lowland forest in eastern Amazonia,Caxiuanã,Brazil[J]. Soil Biol Biochem, 2008,40(3):740-750. DOI: 10.1016/j.soilbio.2007.10.009.
[33]
HARDISON A K, ALGAR C K, GIBLIN A E , et al. Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium (DNRA) and N2 production[J]. Geochimica et Cosmochimica Acta, 2015,164:146-160. DOI: 10.1016/j.gca.2015.04.049.
[34]
邓峰煜 . 长江口硝酸盐异化还原过程及其影响因素研究[D]. 上海: 华东师范大学, 2016.
DENG F Y . Dissimilatory nitrate reduction processes and associated contribution to nitrogen removal in sediments of the Yangtze estuary[D]. Shanghai: East China Normal University, 2016.
[35]
KREILING R M, RICHARDSON W B, CAVANAUGH J C , et al. Summer nitrate uptake and denitrification in an upper Mississippi River backwater lake:the role of rooted aquatic vegetation[J]. Biogeochemistry, 2011,104(1/2/3):309-324. DOI: 10.1007/s10533-010-9503-9.
[36]
FERNANDES S O, BONIN P C, MICHOTEY V D , et al. Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium[J]. Sci Rep, 2012,2(1):419. DOI: 10.1038/srep00419.
[37]
STROHM T O, GRIFFIN B, ZUMFT W G , et al. Growth yields in bacterial denitrification and nitrate ammonification[J]. Appl Environ Microbiol, 2007,73(5):1420-1424. DOI: 10.1128/AEM.02508-06.
Denitrification and nitrate ammonification are considered the highest-energy-yielding respiration systems in anoxic environments after oxygen has been consumed. The corresponding free energy changes are 7 and 35% lower than that of aerobic respiration, respectively. Growth yield determinations with pure cultures of Paracoccus denitrificans and Pseudomonas stutzeri revealed that far less energy is converted via ATP into cell mass than expected from the above calculations. Denitrification with formate or hydrogen as electron donor yielded about 2.4 to 3.0 g dry matter per mol formate or hydrogen and 15 to 18 g dry matter per mol acetate. Similar yields with acetate were obtained with Pseudomonas stutzeri. Wolinella succinogenes and Sulfurospirillum deleyianum, which reduce nitrate to ammonia, both exhibited similar yield values with formate or H2 plus nitrate. The results indicate that ATP synthesis in denitrification is far lower than expected from the free energy changes and even lower than in nitrate ammonification. The results are discussed against the background of our present understanding of electron flow in denitrification and with respect to the importance of denitrification and nitrate ammonification in the environment.
[38]
章振亚, 丁陈利, 肖明 . 崇明东滩湿地不同潮汐带入侵植物互花米草根际细菌的多样性[J]. 生态学报, 2012,32(21):6636-6646.
ZHANG Z Y, DING C L, XIAO M . The diversity of invasive plant Spartina alterniflora rhizosphere bacteria in a tidal salt marshes at Chongming Dongtan in the Yangtze River estuary[J]. Acta Ecol Sin, 2012,32(21):6636-6646. DOI: 10.5846/stxb201109201385.
[39]
NIE M, WANG M, LI B . Effects of salt marsh invasion by Spartina alterniflora on sulfate-reducing bacteria in the Yangtze River estuary,China[J]. Ecol Eng, 2009,35(12):1804-1808. DOI: 10.1016/j.ecoleng.2009.08.002.
[40]
GROFFMAN P M . Wetland denitrification:Influence of site quality and relationships with wetland delineation protocols[J]. Soil Sci Soc Am J, 1997,61(1):323-329. DOI: 10.2136/sssaj1997.03615995006100010047x.
[41]
ZHANG C B, LIU W L, HAN W J , et al. Responses of dissimilatory nitrate reduction to ammonium and denitrification to plant presence,plant species and species richness in simulated vertical flow constructed wetlands[J]. Wetlands, 2017,37(1):109-122. DOI: 10.1007/s13157-016-0846-4.
[42]
STEVENS R J, LAUGHLIN R J, MALONE J P . Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen[J]. Soil Biol Biochem, 1998,30(8/9):1119-1126. DOI: 10.1016/S0038-0717(97)00227-7.
[43]
李丹, 梁锡宏, 李政威 , 等. 一株同步硝化-反硝化菌的絮凝特性[J]. 生物加工过程, 2019,17(1):104-109.
LI D, LIANG X H, LI Z W , et al. Aggregation characteristics of a nitrifying-denitrifying bacterium[J]. Chinese Journal of Bioprocess Engineering, 2019,17(1):104-109. DOI : 10.3969/j.issn.1672-3678.2019.01.014.
[44]
张海涛, 张迪龙, 洪梅 , 等. 碳源对潜流带中氮素迁移转化影响的实验研究[J]. 人民长江, 2014,45(14):22-26.
ZHANG H T, ZHANG D L, HONG M , et al. Experimental study on effect of carbon sources on nitrogen migration in hyporheic zone[J]. Yangtze River, 2014,45(14):22-26. DOI: 10.16232/j.cnki.1001-4179.2014.14.009.

基金

国家自然科学基金项目(41375149)
江苏高校优势学科建设工程资助项目(PAPD)

编辑: 郑琰燚

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1570 KB)

Accesses

Citation

Detail

段落导航
相关文章

/