南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (5): 174-180.doi: 10.3969/j.issn.1000-2006.201904052
收稿日期:
2019-04-25
修回日期:
2020-05-28
出版日期:
2020-10-30
发布日期:
2020-11-19
通讯作者:
韩建刚
基金资助:
WANG Xinxin1(), HAN Jiangang1,2,*(), XU Chuanhong1, XU Sha1
Received:
2019-04-25
Revised:
2020-05-28
Online:
2020-10-30
Published:
2020-11-19
Contact:
HAN Jiangang
摘要:
【目的】分析自然和人为活动加速影响下沿海湿地土壤碳氮比变化对硝态氮还原过程的影响。【方法】以崇明东滩典型滨海湿地为例,采集4种不同覆被类型下沉积物样品,添加C6H12O6或KNO3溶液,使沉积物有机碳与硝态氮比例($C/NO_3^--N$)增大30%和减小30%,借助 15N同位素稀释技术,研究反硝化(Den)与硝态氮氨化(DNRA)的变化特征。【结果】$C/NO_3^--N$的升高或降低均引起芦苇和互花米草覆被下沉积物Den和DNRA速率的显著下降(P<0.05)。芦苇覆被下Den速率从原土的10.1 μg/(kg·h)降至1.0~3.1 μg /(kg·h),互花米草覆被下Den速率从原土的3.4 μg /(kg·h)降至0.3~0.4 μg /(kg·h)。相比较而言,芦苇植被下DNRA速率从原土的21.9 μg /(kg·h)降至12.7~14.5 μg /(kg·h),互花米草覆被下从原土的42.6 μg /(kg·h)降至3.1~5.8 μg /(kg·h)。【结论】4种覆被下沉积物DNRA/Den值均大于1,表明DNRA是湿地硝态氮还原的主要途径。与$C/NO_3^--N$减小相比,$C/NO_3^--N$增大使$NO_3^--N$的还原更趋向DNRA过程。崇明东滩湿地$C/NO_3^--N$的波动(±30%)可能并不会导致沉积物N2O排放的显著增加。
中图分类号:
王新新,韩建刚,徐传红,等. 碳氮比改变对崇明东滩湿地反硝化与硝态氮氨化的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 174-180.
WANG Xinxin, HAN Jiangang, XU Chuanhong, XU Sha. Effects of $C/NO_{3}^{-}-N$ change on denitrification and dissimilatory nitrate reduction to ammonium in the Chongming Dongtan wetland[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(5): 174-180.DOI: 10.3969/j.issn.1000-2006.201904052.
表1
沉积物基础理化性质"
覆被类型 cover type | pH | w(SOC)/ (g·kg-1) | w(TN)/ (g·kg-1) | w(N (mg·kg-1) | w(N (mg·kg-1) | w/% | ||
---|---|---|---|---|---|---|---|---|
砂粒sand (≥20~2 000 μm) | 粉粒powder (≥2~20 μm) | 黏粒clay (<2 μm) | ||||||
光滩(Ⅰ) | 8.8±0.3 | 6.9±0.2 | 0.9±0.0 | 5.7±0.4 | 6.5±0.2 | 63.6±1.1 | 36.4±2.4 | 0.0±0.0 |
互花米草(Ⅱ) | 8.8±0.4 | 11.4±0.5 | 1.4±0.1 | 6.2±0.3 | 5.9±0.3 | 30.5±2.3 | 69.3±4.2 | 0.1±0.0 |
互花米草-芦苇(Ⅲ) | 9.0±0.5 | 15.0±0.9 | 1.6±0.1 | 6.6±0.3 | 6.2±0.3 | 32.8±2.0 | 66.8±3.8 | 0.5±0.0 |
芦苇(Ⅳ) | 8.8±0.4 | 13.2±0.8 | 1.6±0.2 | 7.0±0.4 | 6.6±0.2 | 18.7±1.2 | 81.3±4.3 | 0.0±0.0 |
[1] | 殷士学 . 淹水土壤中硝态氮异化还原成铵过程的研究[D]. 南京:南京农业大学, 2000. |
YIN S X . Dissimilatory nitrate reduction to ammonium in submerged soils[D]. Nanjing:Nanjing Agricultural University, 2000. | |
[2] | 徐继荣, 王友绍, 殷建平 , 等. 珠江口入海河段DIN形态转化与硝化和反硝化作用[J]. 环境科学学报, 2005,25(5):686-692. |
XU J R, WANG Y S, YIN J P , et al. Transformation of dissolved inorganic nitrogen species and nitrigication and denitrification processes in the near sea section of Zhujiang River[J]. Acta Sci Circumstantiae, 2005,25(5):686-692. DOI: 10.13671/j.hjkxxb.2005.05.021. | |
[3] | 王万忠, 饶磊, 王沛芳 , 等. 河流护岸多孔生态材料对水体中硝态氮去除试验[J]. 水资源保护, 2018,34(1):58-63. |
WANG W Z, RAO L, WANG P F , et al. Experiment of porous ecological material of river revetment on removal of nitrate nitrogen in water[J]. Water Resources Protection, 2018,34(1):58-63. | |
[4] | 杨柳燕, 王楚楚, 孙旭 , 等. 淡水湖泊微生物硝化反硝化过程与影响因素研究[J]. 水资源保护, 2016,32(1):12-22. |
YANG L Y, WANG C C, SUN X , et al. Study on microbial nitrification and denitrification processes and influence factors in freshwater lakes[J]. Water Resources Protection, 2016,32(1):12-22. | |
[5] | 蔡延江, 丁维新, 项剑 . 土壤N2O和NO产生机制研究进展[J]. 土壤, 2012,44(5):712-718. |
CAI Y J, DING W X, XIANG J . Mechanisms of nitrous oxide and nitric oxide production in soils:a review[J]. Soils, 2012,44(5):712-718. DOI: 10.13758/j.cnki.tr.2012.05.001. | |
[6] | 邓焕广, 张智博, 张菊 , 等. 东鱼河春季沉积物反硝化脱氮作用与N2O排放研究[J]. 水土保持学报, 2019,33(1):283-287. |
DENG H G, ZHANG Z B, ZHANG J , et al. Denitrification and N2O emission in sediments of Dongyu River in spring[J]. J Soil Water Conserv, 2019,33(1):283-287. DOI: 10.13870/j.cnki.stbcxb.2019.01.044. | |
[7] | 韦宗敏 . 微好氧环境中硝酸盐异化还原成铵的影响研究[D]. 广州:华南理工大学, 2012. |
WEI Z M . Preliminary research on dissimilatory nitrate reduction to ammonium in microaerobic condition[D]. Guangzhou:South China University of Technology, 2012. | |
[8] | ZHANG W J, ZHANG Y, SU W T , et al. Effects of cathode potentials and nitrate concentrations on dissimilatory nitrate reductions by Pseudomonas alcaliphila in bioelectrochemical systems[J]. J Environ Sci, 2014,26(4):885-891. DOI: 10.1016/S1001-0742(13)60460-X. |
[9] | ZHANG J B, LAN T , MÜLLER C,et al.Dissimilatory nitrate reduction to ammonium (DNRA) plays an important role in soil nitrogen conservation in neutral and alkaline but not acidic rice soil[J]. J Soils Sediments, 2015,15(3):523-531. DOI: 10.1007/s11368-014-1037-7. |
[10] |
KUYPERS M M M, MARCHANT H K, KARTAL B . The microbial nitrogen-cycling network[J]. Nat Rev Microbiol, 2018,16(5):263-276. DOI: 10.1038/nrmicro.2018.9.
doi: 10.1038/nrmicro.2018.9 pmid: 29398704 |
[11] | MA H B, AELION C M . Ammonium production during microbial nitrate removal in soil microcosms from a developing marsh estuary[J]. Soil Biol Biochem, 2005,37(10):1869-1878. DOI: 10.1016/j.soilbio.2005.02.020. |
[12] |
HERBERT R A . Nitrogen cycling in coastal marine ecosystems[J]. FEMS Microbiol Rev, 1999,23(5):563-590. DOI: 10.1016/S0168-6445(99)00022-4.
pmid: 10525167 |
[13] | 陈怀璞, 张天雨, 葛振鸣 , 等. 崇明东滩盐沼湿地土壤碳氮储量分布特征[J]. 生态与农村环境学报, 2017,33(3):242-251. |
CHEN H P, ZHANG T Y, GE Z M , et al. Distribution of soil carbon and nitrogen stocks in salt marsh wetland in Dongtan of Chongming[J]. J Ecol Rural Environ, 2017,33(3):242-251. DOI: 10.11934/j.issn.1673-4831.2017.03.007. | |
[14] | 宋大平, 左强, 刘本生 , 等. 农业面源污染中氮排放时空变化及其健康风险评价研究:以淮河流域为例[J]. 农业环境科学学报, 2018,37(6):1219-1231. |
SONG D P, ZUO Q, LIU B S , et al. Estimation of spatio-temporal variability and health risks of nitrogen emissions from agricultural non-point source pollution:a case study of the Huaihe River basin,China[J]. J Agro-Environ Sci, 2018,37(6):1219-1231. DOI: 10.11654/jaes.2017-1374. | |
[15] | 万晓红, 王雨春, 陆瑾 , 等. 白洋淀湿地氮素转化和N2O排放特征研究[J]. 水利学报, 2009,40(10):1168-1174. |
WAN X H, WANG Y C, LU J , et al. Study on nitrogen transformation and N2O emission flux in Baiyangdian wetland[J]. J Hydraul Eng, 2009,40(10):1168-1174. DOI: 10.13243/j.cnki.slxb.2009.10.001. | |
[16] | 胡泓 . 长江口芦苇湿地温室气体排放通量及影响因素研究[D]. 上海:华东师范大学, 2014. |
HU H . Greenhouse gases fluxes at Yangtze estuary Phragmites australis wetland and the influencing factors[D]. Shanghai:East China Normal University, 2014. | |
[17] |
LAVERMAN A M, CANAVAN R W, SLOMP C P , et al. Potential nitrate removal in a coastal freshwater sediment (Haringvliet Lake,the Netherlands) and response to salinization[J]. Water Res, 2007,41(14):3061-3068. DOI: 10.1016/j.watres.2007.04.002.
doi: 10.1016/j.watres.2007.04.002 pmid: 17544474 |
[18] | YIN S X, CHEN D, CHEN L M , et al. Dissimilatory nitrate reduction to ammonium and responsible microorganisms in two Chinese and Australian paddy soils[J]. Soil Biol Biochem, 2002,34(8):1131-1137. DOI: 10.1016/S0038-0717(02)00049-4. |
[19] | 葛潇霄, 田昆, 郭雪莲 , 等. 氮输入对纳帕海沼泽湿地土壤氨挥发和反硝化的影响[J]. 生态环境学报, 2011,20(12):1846-1852. |
GE X X, TIAN K, GUO X L , et al. Effects of nitrogen input on marsh wetland soil ammonia volatilization and denitrification in Napahai[J]. Ecol Environ Sci, 2011,20(12):1846-1852. DOI: 10.16258/j.cnki.1674-5906.2011.12.026. | |
[20] | SCHMIDT C S, RICHARDSON D J, BAGGS E M . Constraining the conditions conducive to dissimilatory nitrate reduction to ammonium in temperate arable soils[J]. Soil Biol Biochem, 2011,43(7):1607-1611. DOI: 10.1016/j.soilbio.2011.02.015. |
[21] | FAZZOLARI É, NICOLARDOT B, GERMON J C . Simultaneous effects of increasing levels of glucose and oxygen partial pressures on denitrification and dissimilatory nitrate reduction to ammonium in repacked soil cores[J]. Eur J Soil Biol, 1998,34(1):47-52. DOI: 10.1016/S1164-5563(99)80006-5. |
[22] | 崔洪磊, 徐莎, 印杰 , 等. 植被收割对滨海湿地沉积物中CO2和N2O释放的影响[J]. 环境科学研究, 2015,28(8):1200-1208. |
CUI H L, XU S, YIN J , et al. Effects of vegetation harvest on CO2 and N2O emissions from sediments in a typical coastal wetland[J]. Res Environ Sci, 2015,28(8):1200-1208. DOI: 10.13198/j.issn.1001-6929.2015.08.04. | |
[23] | 徐莎, 陈圆, 印杰 , 等. 典型滨海湿地沉积物反硝化与硝态氮氨化相对重要性研究[J]. 南京林业大学学报(自然科学版), 2016,40(2):9-15. |
XU S, CHEN Y, YIN J , et al. The relative importance of dissimilatory nitrate reduction to ammonium and denitrification in sediments in a typical coastal wetland[J]. J Nanjing For Univ (Nat Sci Ed), 2016,40(2):9-15. DOI: 10.3969/j.issn.1000-2006.2016.02.002. | |
[24] | 印杰, 汤逸帆, 崔洪磊 , 等. 崇明东滩湿地不同植物群落下沉积物中CO2和N2O的释放动态研究[J]. 南京林业大学学报(自然科学版), 2016,40(4):29-34. |
YIN J, TANG Y F, CUI H L , et al. Emissions of CO2 and N2O in sediments with different vegetation types in Chongming Dongtan wetland[J]. J Nanjing For Univ (Nat Sci Ed), 2016,40(4):29-34 DOI: 10.3969 /j.issn.1000-2006.2016.04.005. | |
[25] | LIU X, HAN J G, MA Z W , et al. Effect of carbon source on dissimilatory nitrate reduction to ammonium in costal wetland sediments[J]. J Soil Sci Plant Nutr, 2016(2):337-349. DOI: 10.4067/s0718-95162016005000029. |
[26] | 唐洪根, 周廷璋, 辛沛 . 淤积刺激下滨海湿地植物根系吸水及土壤水分变化[J/OL]. 水资源保护,2020:1-11.[ 2020- 06- 28]. http://kns.cnki.net/kcms/detail/32.1356.tv.20200210.1717.011.html. |
[27] | 孙建飞, 白娥, 戴崴巍 , 等. 15N标记土壤连续培养过程中扩散法测定无机氮同位素方法改进 [J]. 生态学杂志, 2014,33(9):2574-2580. |
SUN J F, BAI B, DAI W W , et al. Improvements of the diffusion method to measure inorganic nitrogen isotope of 15N labeled soil [J]. Chin J Ecol, 2014,33(9):2574-2580. DOI: 10.13292/j.1000-4890.2014.0176. | |
[28] | 贾俊仙, 李忠佩, 车玉萍 . 添加葡萄糖对不同肥力红壤性水稻土氮素转化的影响[J]. 中国农业科学, 2010,43(8):1617-1624. |
JIA J X, LI Z P, CHE Y P . Effects of glucose addition on N transformations in paddy soils with a gradient of organic C content in subtropical China[J]. Sci Agric Sin, 2010,43(8):1617-1624. DOI: 10.3864/j.issn.0578-1752.2010.08.010. | |
[29] | LU W W, ZHANG H L, SHI W M . Dissimilatory nitrate reduction to ammonium in an anaerobic agricultural soil as affected by glucose and free sulfide[J]. Eur J Soil Biol, 2013,58:98-104. DOI: 10.1016/j.ejsobi.2013.07.003. |
[30] | MATHESON F E, NGUYEN M L, COOPER A B , et al. Fate of 15N-nitrate in unplanted,planted and harvested riparian wetland soil microcosms [J]. Ecol Eng, 2002,19(4):249-264. DOI: 10.1016/S0925-8574(02)00093-9. |
[31] | 龙虹竹, 汪涛, 田琳琳 , 等. 川中丘陵区农业源头沟渠反硝化速率特征及其影响因素[J]. 重庆师范大学学报(自然科学版), 2016,33(4):166-172. |
LONG H Z, WANG T, TIAN L L , et al. Denitrification variations and influencing factors in agriculture headwater ditch in the hilly area of Sichuan central basin[J]. J Chongqing Norm Univ (Nat Sci Ed), 2016,33(4):166-172. DOI: 10.11721/cqnuj20160402. | |
[32] | SOTTA E D, CORRE M D, VELDKAMP E . Differing N status and N retention processes of soils under old-growth lowland forest in eastern Amazonia,Caxiuanã,Brazil[J]. Soil Biol Biochem, 2008,40(3):740-750. DOI: 10.1016/j.soilbio.2007.10.009. |
[33] | HARDISON A K, ALGAR C K, GIBLIN A E , et al. Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium (DNRA) and N2 production[J]. Geochimica et Cosmochimica Acta, 2015,164:146-160. DOI: 10.1016/j.gca.2015.04.049. |
[34] | 邓峰煜 . 长江口硝酸盐异化还原过程及其影响因素研究[D]. 上海: 华东师范大学, 2016. |
DENG F Y . Dissimilatory nitrate reduction processes and associated contribution to nitrogen removal in sediments of the Yangtze estuary[D]. Shanghai: East China Normal University, 2016. | |
[35] | KREILING R M, RICHARDSON W B, CAVANAUGH J C , et al. Summer nitrate uptake and denitrification in an upper Mississippi River backwater lake:the role of rooted aquatic vegetation[J]. Biogeochemistry, 2011,104(1/2/3):309-324. DOI: 10.1007/s10533-010-9503-9. |
[36] | FERNANDES S O, BONIN P C, MICHOTEY V D , et al. Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium[J]. Sci Rep, 2012,2(1):419. DOI: 10.1038/srep00419. |
[37] |
STROHM T O, GRIFFIN B, ZUMFT W G , et al. Growth yields in bacterial denitrification and nitrate ammonification[J]. Appl Environ Microbiol, 2007,73(5):1420-1424. DOI: 10.1128/AEM.02508-06.
doi: 10.1128/AEM.02508-06 pmid: 17209072 |
[38] | 章振亚, 丁陈利, 肖明 . 崇明东滩湿地不同潮汐带入侵植物互花米草根际细菌的多样性[J]. 生态学报, 2012,32(21):6636-6646. |
ZHANG Z Y, DING C L, XIAO M . The diversity of invasive plant Spartina alterniflora rhizosphere bacteria in a tidal salt marshes at Chongming Dongtan in the Yangtze River estuary[J]. Acta Ecol Sin, 2012,32(21):6636-6646. DOI: 10.5846/stxb201109201385. | |
[39] | NIE M, WANG M, LI B . Effects of salt marsh invasion by Spartina alterniflora on sulfate-reducing bacteria in the Yangtze River estuary,China[J]. Ecol Eng, 2009,35(12):1804-1808. DOI: 10.1016/j.ecoleng.2009.08.002. |
[40] | GROFFMAN P M . Wetland denitrification:Influence of site quality and relationships with wetland delineation protocols[J]. Soil Sci Soc Am J, 1997,61(1):323-329. DOI: 10.2136/sssaj1997.03615995006100010047x. |
[41] | ZHANG C B, LIU W L, HAN W J , et al. Responses of dissimilatory nitrate reduction to ammonium and denitrification to plant presence,plant species and species richness in simulated vertical flow constructed wetlands[J]. Wetlands, 2017,37(1):109-122. DOI: 10.1007/s13157-016-0846-4. |
[42] | STEVENS R J, LAUGHLIN R J, MALONE J P . Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen[J]. Soil Biol Biochem, 1998,30(8/9):1119-1126. DOI: 10.1016/S0038-0717(97)00227-7. |
[43] | 李丹, 梁锡宏, 李政威 , 等. 一株同步硝化-反硝化菌的絮凝特性[J]. 生物加工过程, 2019,17(1):104-109. |
LI D, LIANG X H, LI Z W , et al. Aggregation characteristics of a nitrifying-denitrifying bacterium[J]. Chinese Journal of Bioprocess Engineering, 2019,17(1):104-109. DOI : 10.3969/j.issn.1672-3678.2019.01.014. | |
[44] | 张海涛, 张迪龙, 洪梅 , 等. 碳源对潜流带中氮素迁移转化影响的实验研究[J]. 人民长江, 2014,45(14):22-26. |
ZHANG H T, ZHANG D L, HONG M , et al. Experimental study on effect of carbon sources on nitrogen migration in hyporheic zone[J]. Yangtze River, 2014,45(14):22-26. DOI: 10.16232/j.cnki.1001-4179.2014.14.009. |
[1] | 韩森, 阮仁宗, 傅巧妮, 许捍卫, 衡雪彪. 基于Sentinel-1和Sentinel-2影像的洪泽湖国家湿地公园水生植被信息提取[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 19-26. |
[2] | 赵志强, 许晓龙, 袁青, 吴妍. 哈尔滨段松花江湿地景观格局演变及驱动因素分析[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 219-226. |
[3] | 张佳敏, 刘小燕, 邓懿, 冯耀, 朱斌, 初磊, 张增信. 无锡市小微湿地演变特征及影响因素分析[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 27-36. |
[4] | 曾哲礼, 佘济云, 唐子朝, 罗楚滢. 基于全球地表水数据的长沙市湿地景观动态变化研究[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 9-18. |
[5] | 程方, 孙婷玉, 叶建仁. 抗松针褐斑病湿地松未成熟合子胚胚性愈伤组织的诱导[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 175-182. |
[6] | 李威, 李吉平, 张银龙, 李萍萍, 韩建刚. 双碳目标背景下湖泊湿地的生态修复技术[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 157-166. |
[7] | 李潇, 杨加猛, 陈禹衡, 毛岭峰, 葛之葳. 基于土地利用变化的江苏盐城湿地自然保护区生境质量评估[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 169-176. |
[8] | 邵君学, 胡昕欣, 王俪玢, 周婷婷, 李欣, 冯育青, 周敏军, 戴小华, 王洁, 谢冬. 湿地公园鸟类栖息地禾本科群落盖度对雀形目鸟类集团的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 194-200. |
[9] | 谢君毅, 徐侠, 蔡斌, 张惠光. “碳中和”背景下碳输入方式对森林土壤活性氮库及氮循环的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 1-11. |
[10] | 孙荣卿, 董李勤, 张昆, 刘宏强, 王耠熠, 胡昭佚. 四川若尔盖湿地国家级自然保护区水体氢氧同位素与水化学特征[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 169-178. |
[11] | 贾婷, 宋武云, 关新贤, 魏智文, 陈涵, 易敏, 熊启慧, 张露. 湿地松针叶功能性状及其对磷添加的响应[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 65-71. |
[12] | 王玄, 崔鹏, 丁晶晶, 常青. 江苏南部沿海越冬水鸟群落结构及多样性分析[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 178-184. |
[13] | 夏雯雯, 李想, 王钰祺, 徐驰, 刘茂松. 互花米草与盐地碱蓬群落交错带土壤因子的梯度变化特征[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 37-44. |
[14] | 陈秀波, 段文标, 陈立新, 朱德全, 赵晨晨, 刘东旭. 小兴安岭3种原始红松混交林土壤nirK型反硝化微生物群落特征[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 77-86. |
[15] | 季淮, 韩建刚, 李萍萍, 朱咏莉, 郭俨辉, 郝达平, 崔皓. 洪泽湖湿地植被类型对土壤有机碳粒径分布及微生物群落结构特征的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 141-150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||