美洲黑杨无性系木材纤维性状遗传变异

刘玉鑫, 颜开义, 何伟, 潘惠新

南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (2) : 67-74.

PDF(2759 KB)
PDF(2759 KB)
南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (2) : 67-74. DOI: 10.3969/j.issn.1000-2006.201904054
研究论文

美洲黑杨无性系木材纤维性状遗传变异

作者信息 +

Genetic variation of fiber traits in Populus deltoides clones

Author information +
文章历史 +

摘要

【目的】美洲黑杨是苏北地区栽植面积最大的用材树种之一,具有重要的经济价值和生态价值。近年来,随着市场对杨树木材需求量的增加及质量要求的提高,对杨树材性改良的研究迫在眉睫。材性性状中,纤维长度、纤维长宽比等性状值的大小直接影响杨木制浆性能和造纸质量。通过对美洲黑杨无性系木材纤维性状遗传变异的研究,了解杨树木材纤维性状的遗传变异规律,为杨树材性改良及新品种选择提供科学依据。【方法】以泗洪县林场11个美洲黑杨无性系10年生对比试验林为材料,选取各无性系在各区组的标准株,测量其胸径和树高后,伐倒并在离地1.3 m处截取圆盘带回实验室气干备用。试样经脱木素试剂处理后,分别用光学显微镜及纤维形态自动分析仪(MORFI)测量其纤维长度和纤维宽度,计算得到纤维长宽比。将两种测量方法得到的数据进行回归分析,确定回归方程,使后续大规模测定的数据更加精确。使用SPSS 19.0对获得的数据进行分析处理,得到各纤维性状的遗传变异规律和性状间相关关系。采用K-means法对11个无性系进行聚类分析,选取纤维性状和生长性状均表现优异的无性系。用R语言作图,进行数据可视化表达。【结果】用两种测量方法测得的纤维长度、纤维长宽比回归分析R2值均大于0.9, MORFI测量值可靠。纤维长度和纤维长宽比的大小均随林龄增加而增加。11个无性系纤维长度、纤维宽度和纤维长宽比的平均值分别为1 107.8 μm、22.3 μm和49.57。3个纤维性状在无性系间存在显著差异,区组间差异不显著;纤维长度、纤维宽度和纤维长宽比性状的遗传力分别为0.764、0.832和0.590。3个纤维性状在第3、6、9龄间表现出高度相关。纤维长度与生长性状间的相关系数为0.21~0.25,纤维宽度与生长性状间相关系数处于0.39~0.48;纤维长宽比与生长性状间相关系数为-0.07~-0.02。11个无性系可分为3类,其中4-6、4-50、2-2和4-45表现优异,10-34、7-40、7-53和8-9表现次之,7-45、1-20和7-38表现较差。【结论】MORFI(纤维形态自动分析仪)可以快速且较为精确地测量纤维长度和纤维宽度,适合大批量数据的测定,但测定结果需进行回归调整。纤维长度和纤维长宽比随着林龄增大而增加,说明随着林龄的增加,木材制浆性能增强。美洲黑杨无性系纤维性状存在遗传变异,且变异受遗传的影响大于受环境的影响。各纤维性状在幼林第3龄与中林第6龄和成林第9龄间相关密切,且为正相关,对美洲黑杨纤维性状的选择可在林木生长早期进行。美洲黑杨无性系生长性状与纤维长度、纤维长宽比性状间的相关性不显著,在美洲黑杨纤维用材遗传改良时可采用独立选择方法。11个无性系中,2-2、4-6、4-45和4-50在纤维性状和生长性状方面均表现优异,可进行进一步遗传测定,为新品种选育创造条件。

Abstract

【Objective】Populus deltoides is one of the largest timber species planted in the orthern Jiangsu and it has important economic and ecological value. In recent years, with the increase in market demand for poplar wood and higher requirements for wood quality, the research on poplar wood property improvement is necessary. Among the wood properties, fiber length and ratio of fiber length to width directly affect the pulping performance and paper quality of poplar. In this study, we aimed to investigate the general patterns of genetic variation in fiber traits of P. deltoides and to provide the scientific basis for poplar wood improvement.【Method】Eleven ten-year-oldP. deltoides clones were used as materials. Sample trees of each clone were selected in each of the four blocks. After measuring the tree height and diameter at breast height (DBH), sample trees were cut down and the wooden discs were intercepted at 1.3 m from the ground and brought back to the laboratory for air-drying. After the samples were treated with the delignification reagent, the fiber traits were measured by optical microscope and MANUEL MORFI. The SPSS 19.0 software was used to analyze and process the data, and the genetic variation and correlation of each trait were analyzed. The K-means method was used to cluster the 11 clones, and among them, the clones with excellent fiber and growth characters were selected.【Result】The regression analysis of values measured by the two methods showed thatR2 were more than 0.9, thus the MORFI measurement values were reliable. The fiber length and fiber length to width ratio increased with the increase of forest age. The average values of fiber length, fiber width, and fiber length to width ratio of 11 clones were 1 107.8 μm, 22.3 μm and 49.57, respectively. There were significant differences in fiber traits among different clones. The heritability of the three fiber traits was 0.764, 0.832 and 0.590, respectively. The correlation coefficients between fiber length and growth character were between 0.21 and 0.25, and those between fiber width and growth character were between 0.39 and 0.48. The correlation coefficients between fiber length to width ratio and growth character were between -0.07 and -0.02. Eleven clones could be classified into three categories.【Conclusion】The MANUEL MORFI is able to quickly and accurately measure fiber length and width, which was suitable for the measurement of mass data, but the results had to be adjusted by regression. The values of fiber length and ratio of fiber length to width increased with the increase of forest age, which implies that the pulping performance of wood was better with the increase of forest age. Correlation coefficients between different ages were high. These results provided a possibility for early selection of fiber traits in P. deltoides. Genetic variations in fiber traits were observed in different clones, and the heritability of each trait ranged from 0.366 to 0.832. The independent selection method could be used for genetic improvement of P. deltoides. Among all 11 clones, 2-2, 4-6, 4-45 and 4-50 had better fiber and growth properties than those of the rest, and these clones should be further tested to create conditions for new breeding.

关键词

美洲黑杨 / 木材纤维 / 纤维长度 / 纤维宽度 / 遗传变异 / 无性系

Key words

Populus deltoides / wood fiber / fiber length / fiber width / genetic variation / clones

引用本文

导出引用
刘玉鑫, 颜开义, 何伟, . 美洲黑杨无性系木材纤维性状遗传变异[J]. 南京林业大学学报(自然科学版). 2020, 44(2): 67-74 https://doi.org/10.3969/j.issn.1000-2006.201904054
LIU Yuxin, YAN Kaiyi, HE Wei, et al. Genetic variation of fiber traits in Populus deltoides clones[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2020, 44(2): 67-74 https://doi.org/10.3969/j.issn.1000-2006.201904054
中图分类号: S722   

参考文献

[1]
翁文源. 杨树木材纤维长度变异及其在造纸中的应用[J]. 湖北林业科技, 2007,36(2):31-33.
WENG W Y. Application of timber fiber length variation and its papermaking for Populus [J]. Hubei For Sci Technol, 2007,36(2):31-33.DOI: 10.3969/j.issn.1004-3020.2007.02.009.
[2]
FARMER R E J R, WILCOX J R. Preliminary testing of eastern cottonwood clones[J]. Theoretical and Applied Genetics, 1968, 38(5):197-201.
[3]
王明庥, 黄敏仁, 阮锡根, 等. 黑杨派新无性系木材性状的遗传改良[J]. 南京林业大学学报, 1989,13(3):9-16.
WANG M X, HUANG M R, RUAN X G, et al. Genetic improvement of wood characters of new clones in the Aigeiros section[J]. J Nanjing For Univ, 1989,13(3):9-16.
[4]
DEBELL J D, GARTNER B L, DEBELL D S. Fiber length in young hybrid Populus stems grown at extremely different rates[J]. Can J For Res, 1998, 28(4):603-608.DOI: 10.1139/x98-031.
[5]
MANSFIELD S D, WEINEISEN H. Wood fiber quality and kraft pulping efficiencies of trembling aspen (Populus tremuloides Michx) clones[J]. J Wood Chem Technol, 2007, 27(3/4):135-151.DOI: 10.1080/02773810701700786.
[6]
HANCHOR U, MAELIM S, SUANPAGA W, et al. Growth performance and heritability estimation of Acacia crassicarpa in a progeny trial in eastern Thailand[J]. Silvae Genet, 2016, 65(2):58-64.DOI: 10.1515/sg-2016-0017.
[7]
MCGOWN K I, O’HARA K L, YOUNGBLOOD A. Patterns of size variation over time in ponderosa pine stands established at different initial densities[J]. Can J For Res, 2016, 46(1):101-113.DOI: 10.1139/cjfr-2015-0096.
[8]
刘凯, 何北海, 黎小敏, 等. 利用新型纤维形态分析仪分析杉木CTMP浆纤维形态[J]. 中国造纸, 2009,28(12):14-17.
LIU K, HE B H, LI X M, et al. Morphological analysis of the fibers in CTMP pulp and its white water[J]. China Pulp Pap, 2009,28(12):14-17.DOI: 10.3969/j.issn.0254-508X.2009.12.004.
[9]
朱蕾, 李秀梅. 纤维分析仪在浆料分析中的应用研究[J]. 华东纸业, 2012,43(3):37-39.
ZHU L, LI X M. Research on the application of fiber analysis meter in the analysis of pulp[J]. Shanghai Pap Mak, 2012,43(3):37-39.DOI: 10.3969/j.issn.1674-6937.2012.03.014.
[10]
陈春霞, 欧海龙, 邓健信. 非偏振光法测定浆料纤维粗度[J]. 中华纸业, 2012,33(4):56-59.
CHEN C X, OU H L, DENG J X. Application of non-polarized light method for the determination of fiber diameter[J]. China Pulp Pap Ind, 2012,33(4):56-59.DOI: 10.3969/j.issn.1007-9211.2012.04.014.
[11]
曾广植. 对用纸浆纤维筛分组分评价纸张综合强度影响关系的探讨[J]. 纸和造纸, 2006,25(5):74-76.
ZENG G Z. Discussion on evaluating the impacting factors of comprehensive strength of paper by using grouping of pulp fiber fractionation analysis[J]. Pap Pap Mak, 2006,25(5):74-76.DOI: 10.3969/j.issn.1001-6309.2006.05.029.
[12]
张平冬, 吴峰, 康向阳, 等. 三倍体白杨杂种无性系的纤维性状遗传变异研究[J]. 西北林学院学报, 2014,29(1):78-83.
ZHANG P D, WU F, KANG X Y, et al. Genetic variation of fiber properties of triploid hybrid clones of white poplar[J]. J Northwest For Univ, 2014,29(1):78-83.DOI: 10.3969/j.issn.1001-7461.2014.01.16.
[13]
武恒, 查朝生, 王传贵, 等. 人工林杨树12个无性系木材纤维形态特征及变异[J]. 东北林业大学学报, 2011,39(2):8-10,27.
WU H, ZHA C S, WANG C G, et al. Morphological features of wood fiber and its variation for twelve clones of poplar plantations[J]. J Northeast For Univ, 2011,39(2):8-10,27.DOI: 10.3969/j.issn.1000-5382.2011.02.003.
[14]
查朝生, 方宇, 刘盛全, 等. 杨树无性系木材纤维形态特征及其径向变异的研究[J]. 安徽农业大学学报, 2005,32(2):192-197.
ZHA C S, FANG Y, LIU S Q, et al. Radial variation of fiber morphology of different poplar clones[J]. J Anhui Agric Univ, 2005,32(2):192-197.DOI: 10.3969/j.issn.1672-352X.2005.02.015.
[15]
吴峰. 白杨杂种三倍体新品种材性性状遗传变异研究[D]. 北京:北京林业大学, 2013.
WU F. Genotypic variation in wood properties of triploid hybrid varieties of white poplar[D]. Beijing: Beijing Forestry University, 2013.
[16]
卢万鸿. 美洲黑杨无性系材性性状变异研究[D]. 南京:南京林业大学, 2008.
LU W H. Study on variation of wood properties of poplar clones in Populus deltoides Marsh [D]. Nanjing: Nanjing Forestry University, 2008.
[17]
汤玉喜, 吴立勋, 吴敏, 等. 杨树无性系生长与材性遗传变异及综合选择研究[J]. 湖南林业科技, 2005,32(5):1-5.
TANG Y X, WU L X, WU M, et al. Genetic analysis on growth and wood properties and comprehensive selection of Populus spp.clones [J]. Hunan For Sci Technol, 2005,32(5):1-5.DOI: 10.3969/j.issn.1003-5710.2005.05.001.

基金

江苏省科技项目现代农业项目(BE2016387)

编辑: 吴祝华

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(2759 KB)

Accesses

Citation

Detail

段落导航
相关文章

/