团花树NcIRX9基因在木聚糖生物合成中的功能保守性

殷琪, 秦文其, 刘婷婷, 康璐, 吴蔼民, 邓小梅

南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (6) : 129-136.

PDF(4330 KB)
PDF(4330 KB)
南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (6) : 129-136. DOI: 10.3969/j.issn.1000-2006.201906069
研究论文

团花树NcIRX9基因在木聚糖生物合成中的功能保守性

作者信息 +

Functional conservation of Neolamarckia cadamba NcIRX9 gene in xylan biosynthesis

Author information +
文章历史 +

摘要

【目的】木聚糖是双子叶植物中次生壁半纤维素的主要成分,在维持植物次生壁的完整性和植物生长方面有重要作用。在木本植物中,木聚糖对木材性质和生物质能源的利用有重要影响。本研究探索我国南方速生树种团花树NcIRX9基因及其在木聚糖合成中的功能。【方法】结合生物信息学方法,分析团花树NcIRX9亲缘关系和蛋白质结构;构建 YFP( 黄色荧光蛋白) 融合蛋白,观察其亚细胞定位;通过qRT-PCR分析团花树NcIRX9基因的表达特性及组织特异性;通过切片显微观察、化学免疫、单糖分析及H1-NMR分析团花树NcIRX9基因在拟南芥突变体irx9体内的功能。【结果】团花树NcIRX9在进化上保守,其N端存在一个信号肽,定位于高尔基体内,与拟南芥AtIRX9密切相关。NcIRX9基因在根、茎、叶、木质部、韧皮部均有表达,且在木质部中的表达量较高。互补分析表明NcIRX9能部分互补拟南芥突变体irx9表型,是AtIRX9的直系同源基因。此外,本研究还表明在拟南芥突变体irx9过度表达NcIRX9木糖含量升高,侧链信号增强,与此同时还原末端侧链信号增强。【结论】团花树NcIRX9基因行使与拟南芥AtIRX9相似的生物学功能,与木聚糖的合成密切相关。

Abstract

【Objective】Xylan is the major component of secondary wall hemicellulose in dicot plants and plays an indispensable role in maintaining plant secondary wall integrity and plant growth. Xylan also greatly impacts wood properties and biomass energy. The study described here explores theIRX9 gene of Neolamarckia cadamba, a fast-growing tree species in southern China. Furthermore, the role of NcIRX9 in xylan biosynthesis is also explored. 【Method】 Bioinformatics was used to analyze NcIRX9 protein structure. A yellow fluorescent protein (YFP) fusion protein was constructed NcIRX9, and its subcellular localization was observed. Both NcIRX9 expression in different tissues were analyzed by qRT-PCR. In addition, by tissue sectioning and microscopic observation, chemical immunization, monosaccharide analysis, and H1-NMR analysis, we verified the function of NcIRX9. NcIRX9 function was further validated in a mutant Arabidopsis model. 【Result】 NcIRX9 is evolutionarily conserved and contains a signal peptide at its N-terminus, closely related toArabidopsis AtIRX9, which is located in the Golgi. The NcIRX9 gene is expressed in the roots, stems, leaves, xylem and phloem, with its highest level of expression in the xylem. We determined that NcIRX9 can partially rescue the Arabidopsis mutant irx9 phenotype, as it is orthologous to AtIRX9. Moreover, this study also demonstrated that overexpression of NcIRX9 in Arabidopsis irx9 mutants increases xylose content, side chain signal enhancement, and reduces the end side chain signal enhancement. 【Conclusion】 The biological function of the NcIRX9 gene in Neolamarckia cadamba is similar to that of Arabidopsis AtIRX9 and is highly involved in xylan biosynthesis.

关键词

团花树 / 木聚糖 / NcIRX9 / 基因功能 / 生物质能源

Key words

Neolamarckia cadamba / xylan / NcIRX9 / gene function / biomass energy

引用本文

导出引用
殷琪, 秦文其, 刘婷婷, . 团花树NcIRX9基因在木聚糖生物合成中的功能保守性[J]. 南京林业大学学报(自然科学版). 2019, 43(6): 129-136 https://doi.org/10.3969/j.issn.1000-2006.201906069
YIN Qi, QIN Wenqi, LIU Tingting, et al. Functional conservation of Neolamarckia cadamba NcIRX9 gene in xylan biosynthesis[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2019, 43(6): 129-136 https://doi.org/10.3969/j.issn.1000-2006.201906069
中图分类号: Q71   

参考文献

[1]
罗献瑞. 中国植物志[M]. 北京: 科学出版社, 1999: 261.
LUO X R. Flora of China [M]. Beijing: Science Press, 1999: 261.
[2]
邓小梅, 欧阳昆唏, 张倩, 等. 团花研究现状及发展思考[J]. 中南林业科技大学学报, 2011, 31(11):90-95. DOI: 10.14067/j.cnki.1673-923x.2011.11.032.
DENG X M, OUYANG K X, ZHANG Q, et al. Research status and development thinking ofNeolamarckia cadamba [J]. Journal of Central South University of Forestry & Technology, 2011, 31(11):90-95.
[3]
郑万钧. 中国树木志[M]. 北京: 中国林业出版社, 2004: 4594-4595.
ZHENG W J. Chinese tree records[M]. Beijing: China Forestry Publishing House, 2004: 4594-4595.
[4]
苏光荣, 易国南, 杨清. 团花生长特性研究[J]. 西北林学院学报, 2007, 22(5):49-52. DOI: 10.3969/j.issn.1001-7461.2007.05.012.
SU G R, YI G N, YANG Q. A study on the growth character of anthocephalus chinensis[J]. Journal ofNorthwest Forestry University, 2007, 22(5):49-52.
[5]
SCHELLER H V, ULVSKOV P. Hemicelluloses[J]. Annual Review of Plant Biology, 2010, 61(1):263-289. DOI: 10.1146/annurev-arplant-042809-112315.
[6]
PAULY M, GILLE S, LIU L F, et al. Hemicellulose biosynjournal[J]. Planta, 2013, 238(4):627-642. DOI: 10.1007/s00425-013-1921-1.
[7]
MELLEROWICZ E J, GORSHKOVA T A. Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition[J]. Journal of Experimental Botany, 2012, 63(2):551-565. DOI: org/10.1093/jxb/err339.
[8]
NIMZ H H, SCHMITT U, SCHWAB E, et al. Ullmann’s encyclopedia of industrial chemistry[M]. NewYork: Wiley, 2000.
[9]
YORK W, ONEILL M. Biochemical control of xylan biosynjournal: which end is up?[J]. Current Opinion in Plant Biology, 2008, 11(3):258-265. DOI: 10.1016/j.pbi.2008.02.007.
[10]
FAIK A. Xylan biosynjournal: news from the grass[J]. Plant Physiology, 2010, 153(2):396-402.DOI: 10.1104.pp.110.154237.
[11]
吴蔼民, 赵先海, 解巧丽, 等. 葡萄糖醛酸木聚糖生物合成研究进展[J]. 华南农业大学学报, 2015, 36(4):1-10.DOI: 10.7671/j.issn.1001-411X.2015.04.001.
WU A M, ZHAO X H, XIE Q L, et al. Research progress in glucuronoxylan biosynjournal[J]. Journal of South China Agricultural University, 2015, 36(4):1-10.
[12]
GILLE S, PAULY M. O-acetylation of plant cell wall polysaccharides[J]. Frontiers in Plant Science, 2012, 3:12. DOI: 10.3389/fpls.2012.00012.
[13]
MORTIMER J C, MILES G P, BROWN D M, et al. Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(40):17409-17414. DOI: 10.1073/pnas.1005456107.
[14]
PETERSEN P D, LAU J, EBERT B, et al. Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynjournal mutants[J]. Biotechnology for Biofuels, 2012, 5(1):84. DOI: 10.1186/1754-6834-5-84.
[15]
WU A M, HÖRNBLAD E, VOXEUR A, et al. Analysis of the Arabidopsis /-and /-Pairs of Glycosyltransferase genes reveals critical contributions to biosynjournal of the Hemicellulose Glucuronoxylan[J]. Plant Physiology, 2010, 153(2):542-554.DOI: 10.1104/pp.110.154971.
[16]
WU A M, RIHOUEY C, SEVENO M, et al. The Arabidopsis IRX10 and IRX10-LIKE glycosyltransferases are critical for glucuronoxylan biosynjournal during secondary cell wall formation[J]. The Plant Journal: for Cell and Molecular Biology, 2009, 57(4):718-731. DOI: 10.1111/j.1365-313X.2008.03724.
[17]
TURNER R, SOMERVILLE R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall[J]. The Plant Cell, 1997, 9(5):689-701. DOI: 10.1105/tpc.9.5.689.
[18]
BROWN D M, ZEEF L A, ELLIS J, et al. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics[J]. The Plant Cell, 2005, 17(8):2281-2295. DOI: 10.1105/tpc.105.031542.
[19]
ZHONG R Q, PEÑA M J, ZHOU G K, et al. Arabidopsis fragile fiber 8, which encodes a putative glucuronyl transferase, is essential for normal secondary wall synjournal[J]. The Plant Cell, 2005, 17(12):3390-3408. DOI: 10.1105/tpc.105.035501.
[20]
PERSSON S, WEI H R, MILNE J, et al. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets[J]. Proceedings of theNational Academy of Sciences of the United States of America, 2005, 102(24):8633-8638.DOI: 10.1073/pnas.0503392102.
[21]
CARROLL A, SOMERVILLE C. Cellulosic biofuels[J]. Annual Review of Plant Biology, 2009, 60(1):165-182. DOI: 10.1146/annurev.arplant.043008.092125.
[22]
YANG B, WYMAN C E. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose[J]. Biotechnology and Bioengineering, 2004, 86(1):88-95. DOI: 10.1002/bit.20043.
[23]
BROWN D M, ZHANG Z N, STEPHENS E, et al. Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynjournal inArabidopsis[J]. The Plant Journal, 2009, 57(4):732-746. DOI: 10.1111/j.1365-313x.2008.03729.x.
[24]
BROWN D M, GOUBET F, WONG V W, et al. Comparison of five xylan synjournal mutants reveals new insight into the mechanisms of xylan synjournal[J]. The Plant Journal, 2007, 52(6):1154-1168. DOI: 10.1111/j.1365-313x.2007.03307.
[25]
LEE C, TENG Q, HUANG W L, et al. The Arabidopsis family GT43 glycosyltransferases form two functionally nonredundant groups essential for the elongation of glucuronoxylan backbone[J]. Plant Physiology, 2010, 153(2):526-541. DOI: 10.1104/pp.110.155309.
[26]
JENSEN J K, JOHNSON N R, WILKERSON C G. Arabidopsis thaliana IRX10 and two related proteins from psyllium andPhyscomitrella patensare xylan xylosyltransferases[J]. The Plant Journal, 2014, 80(2):207-215. DOI: 10.1111/tpj.12641.
[27]
LEE C, O’NEILL M A, TSUMURAYA Y, et al. The irregular xylem 9 mutant is deficient in xylan xylosyltransferase activity[J]. Plant and Cell Physiology, 2007, 48(11):1624-1634. DOI: 10.1093/pcp/pcm135.
[28]
PEÑA M J, ZHONG R Q, ZHOU G K, et al. Arabidopsis irregular xylem 8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynjournal[J]. The Plant Cell, 2007, 19(2):549-563. DOI: 10.1105/tpc.106.049320.
[29]
LI L, HUANG J F, QIN L X, et al. Two Cotton fiber-associated glycosyltransferases, GhGT43A1 and GhGT43C1, function in hemicellulose glucuronoxylan biosynjournal during plant development[J]. Physiologia Plantarum, 2014, 152(2):367-379. DOI: 10.1111/ppl.12190.
[30]
CHINIQUY D, VARANASI P, OH T, et al. Three novel rice genes closely related to the Arabidopsis IRX9, IRX9L, and IRX14 genes and their roles in xylan biosynjournal[J]. Frontiers in Plant Science, 2013, 4:83. DOI: 10.3389/fpls.2013.00083.
[31]
RATKE C, PAWAR P M A, BALASUBRAMANIAN V K, et al. Populus GT43 family members group into distinct sets required for primary and secondary wall xylan biosynjournal and include useful promoters for wood modification[J]. Plant Biotechnology Journal, 2015, 13(1):26-37. DOI: 10.1111/pbi.12232.
[32]
WEI Z, LAMPUGNANI E R, PICARD K L, et al. Asparagus IRX9, IRX10, and IRX14A are components of an active xylan backbone synthase complex that forms in the Golgi apparatus[J]. Plant Physiology, 2016, 171(1):93-109.DOI: 10.1104/pp.15.0191.
[33]
TAMURA K, STECHER G, PETERSON D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12):2725-2729. DOI: 10.1093/molbev/mst197.
[34]
HÖRNBLAD E, ULFSTEDT M, RONNE H, et al. Partial functional conservation of IRX10 homologs in Physcomitrella patens and Arabidopsis thaliana indicates an evolutionary step contributing to vascular formation in land plants[J]. BMC Plant Biology, 2013, 13(1):3. DOI: 10.1186/1471-2229-13-3.
[35]
TAUJALE R, YIN Y B. Glycosyltransferase family 43 is also found in early eukaryotes and has three subfamilies in charophycean green algae[J]. PLoS One, 2015, 10(5):e0128409. DOI: 10.1371/journal.pone.0128409.

基金

国家自然科学基金项目(31670601)

编辑: 吴祝华

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(4330 KB)

Accesses

Citation

Detail

段落导航
相关文章

/