南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (6): 129-136.doi: 10.3969/j.issn.1000-2006.201906069
殷琪(), 秦文其, 刘婷婷, 康璐, 吴蔼民*(), 邓小梅*()
收稿日期:
2019-06-20
修回日期:
2019-08-06
出版日期:
2019-11-30
发布日期:
2019-11-30
通讯作者:
吴蔼民,邓小梅
基金资助:
YIN Qi(), QIN Wenqi, LIU Tingting, KANG Lu, WU Aimin*(), DENG Xiaomei*()
Received:
2019-06-20
Revised:
2019-08-06
Online:
2019-11-30
Published:
2019-11-30
Contact:
WU Aimin,DENG Xiaomei
摘要:
【目的】木聚糖是双子叶植物中次生壁半纤维素的主要成分,在维持植物次生壁的完整性和植物生长方面有重要作用。在木本植物中,木聚糖对木材性质和生物质能源的利用有重要影响。本研究探索我国南方速生树种团花树NcIRX9基因及其在木聚糖合成中的功能。【方法】结合生物信息学方法,分析团花树NcIRX9亲缘关系和蛋白质结构;构建 YFP( 黄色荧光蛋白) 融合蛋白,观察其亚细胞定位;通过qRT-PCR分析团花树NcIRX9基因的表达特性及组织特异性;通过切片显微观察、化学免疫、单糖分析及H1-NMR分析团花树NcIRX9基因在拟南芥突变体irx9体内的功能。【结果】团花树NcIRX9在进化上保守,其N端存在一个信号肽,定位于高尔基体内,与拟南芥AtIRX9密切相关。NcIRX9基因在根、茎、叶、木质部、韧皮部均有表达,且在木质部中的表达量较高。互补分析表明NcIRX9能部分互补拟南芥突变体irx9表型,是AtIRX9的直系同源基因。此外,本研究还表明在拟南芥突变体irx9过度表达NcIRX9木糖含量升高,侧链信号增强,与此同时还原末端侧链信号增强。【结论】团花树NcIRX9基因行使与拟南芥AtIRX9相似的生物学功能,与木聚糖的合成密切相关。
中图分类号:
殷琪,秦文其,刘婷婷,等. 团花树NcIRX9基因在木聚糖生物合成中的功能保守性[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 129-136.
YIN Qi, QIN Wenqi, LIU Tingting, KANG Lu, WU Aimin, DENG Xiaomei. Functional conservation of Neolamarckia cadamba NcIRX9 gene in xylan biosynthesis[J].Journal of Nanjing Forestry University (Natural Science Edition), 2019, 43(6): 129-136.DOI: 10.3969/j.issn.1000-2006.201906069.
[1] | 罗献瑞. 中国植物志[M]. 北京: 科学出版社, 1999: 261. |
LUO X R. Flora of China [M]. Beijing: Science Press, 1999: 261. | |
[2] | 邓小梅, 欧阳昆唏, 张倩, 等. 团花研究现状及发展思考[J]. 中南林业科技大学学报, 2011, 31(11):90-95. DOI: 10.14067/j.cnki.1673-923x.2011.11.032. |
DENG X M, OUYANG K X, ZHANG Q, et al. Research status and development thinking ofNeolamarckia cadamba [J]. Journal of Central South University of Forestry & Technology, 2011, 31(11):90-95. | |
[3] | 郑万钧. 中国树木志[M]. 北京: 中国林业出版社, 2004: 4594-4595. |
ZHENG W J. Chinese tree records[M]. Beijing: China Forestry Publishing House, 2004: 4594-4595. | |
[4] | 苏光荣, 易国南, 杨清. 团花生长特性研究[J]. 西北林学院学报, 2007, 22(5):49-52. DOI: 10.3969/j.issn.1001-7461.2007.05.012. |
SU G R, YI G N, YANG Q. A study on the growth character of anthocephalus chinensis[J]. Journal ofNorthwest Forestry University, 2007, 22(5):49-52. | |
[5] |
SCHELLER H V, ULVSKOV P. Hemicelluloses[J]. Annual Review of Plant Biology, 2010, 61(1):263-289. DOI: 10.1146/annurev-arplant-042809-112315.
doi: 10.1146/annurev-arplant-042809-112315 |
[6] |
PAULY M, GILLE S, LIU L F, et al. Hemicellulose biosynjournal[J]. Planta, 2013, 238(4):627-642. DOI: 10.1007/s00425-013-1921-1.
doi: 10.1007/s00425-013-1921-1 |
[7] |
MELLEROWICZ E J, GORSHKOVA T A. Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition[J]. Journal of Experimental Botany, 2012, 63(2):551-565. DOI: org/10.1093/jxb/err339.
doi: 10.1093/jxb/err339 |
[8] | NIMZ H H, SCHMITT U, SCHWAB E, et al. Ullmann’s encyclopedia of industrial chemistry[M]. NewYork: Wiley, 2000. |
[9] |
YORK W, ONEILL M. Biochemical control of xylan biosynjournal: which end is up?[J]. Current Opinion in Plant Biology, 2008, 11(3):258-265. DOI: 10.1016/j.pbi.2008.02.007.
doi: 10.1016/j.pbi.2008.02.007 |
[10] |
FAIK A. Xylan biosynjournal: news from the grass[J]. Plant Physiology, 2010, 153(2):396-402.DOI: 10.1104.pp.110.154237.
doi: 10.1104/pp.110.154237 |
[11] | 吴蔼民, 赵先海, 解巧丽, 等. 葡萄糖醛酸木聚糖生物合成研究进展[J]. 华南农业大学学报, 2015, 36(4):1-10.DOI: 10.7671/j.issn.1001-411X.2015.04.001. |
WU A M, ZHAO X H, XIE Q L, et al. Research progress in glucuronoxylan biosynjournal[J]. Journal of South China Agricultural University, 2015, 36(4):1-10. | |
[12] | GILLE S, PAULY M. O-acetylation of plant cell wall polysaccharides[J]. Frontiers in Plant Science, 2012, 3:12. DOI: 10.3389/fpls.2012.00012. |
[13] | MORTIMER J C, MILES G P, BROWN D M, et al. Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(40):17409-17414. DOI: 10.1073/pnas.1005456107. |
[14] |
PETERSEN P D, LAU J, EBERT B, et al. Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynjournal mutants[J]. Biotechnology for Biofuels, 2012, 5(1):84. DOI: 10.1186/1754-6834-5-84.
doi: 10.1186/1754-6834-5-84 |
[15] |
WU A M, HÖRNBLAD E, VOXEUR A, et al. Analysis of the Arabidopsis /-and /-Pairs of Glycosyltransferase genes reveals critical contributions to biosynjournal of the Hemicellulose Glucuronoxylan[J]. Plant Physiology, 2010, 153(2):542-554.DOI: 10.1104/pp.110.154971.
doi: 10.1104/pp.110.154971 |
[16] |
WU A M, RIHOUEY C, SEVENO M, et al. The Arabidopsis IRX10 and IRX10-LIKE glycosyltransferases are critical for glucuronoxylan biosynjournal during secondary cell wall formation[J]. The Plant Journal: for Cell and Molecular Biology, 2009, 57(4):718-731. DOI: 10.1111/j.1365-313X.2008.03724.
doi: 10.1111/tpj.2009.57.issue-4 |
[17] | TURNER R, SOMERVILLE R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall[J]. The Plant Cell, 1997, 9(5):689-701. DOI: 10.1105/tpc.9.5.689. |
[18] |
BROWN D M, ZEEF L A, ELLIS J, et al. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics[J]. The Plant Cell, 2005, 17(8):2281-2295. DOI: 10.1105/tpc.105.031542.
doi: 10.1105/tpc.105.031542 |
[19] |
ZHONG R Q, PEÑA M J, ZHOU G K, et al. Arabidopsis fragile fiber 8, which encodes a putative glucuronyl transferase, is essential for normal secondary wall synjournal[J]. The Plant Cell, 2005, 17(12):3390-3408. DOI: 10.1105/tpc.105.035501.
doi: 10.1105/tpc.105.035501 |
[20] | PERSSON S, WEI H R, MILNE J, et al. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets[J]. Proceedings of theNational Academy of Sciences of the United States of America, 2005, 102(24):8633-8638.DOI: 10.1073/pnas.0503392102. |
[21] |
CARROLL A, SOMERVILLE C. Cellulosic biofuels[J]. Annual Review of Plant Biology, 2009, 60(1):165-182. DOI: 10.1146/annurev.arplant.043008.092125.
doi: 10.1146/annurev.arplant.043008.092125 |
[22] |
YANG B, WYMAN C E. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose[J]. Biotechnology and Bioengineering, 2004, 86(1):88-95. DOI: 10.1002/bit.20043.
doi: 10.1002/(ISSN)1097-0290 |
[23] |
BROWN D M, ZHANG Z N, STEPHENS E, et al. Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynjournal inArabidopsis[J]. The Plant Journal, 2009, 57(4):732-746. DOI: 10.1111/j.1365-313x.2008.03729.x.
doi: 10.1111/tpj.2009.57.issue-4 |
[24] |
BROWN D M, GOUBET F, WONG V W, et al. Comparison of five xylan synjournal mutants reveals new insight into the mechanisms of xylan synjournal[J]. The Plant Journal, 2007, 52(6):1154-1168. DOI: 10.1111/j.1365-313x.2007.03307.
doi: 10.1111/tpj.2007.52.issue-6 |
[25] |
LEE C, TENG Q, HUANG W L, et al. The Arabidopsis family GT43 glycosyltransferases form two functionally nonredundant groups essential for the elongation of glucuronoxylan backbone[J]. Plant Physiology, 2010, 153(2):526-541. DOI: 10.1104/pp.110.155309.
doi: 10.1104/pp.110.155309 |
[26] |
JENSEN J K, JOHNSON N R, WILKERSON C G. Arabidopsis thaliana IRX10 and two related proteins from psyllium andPhyscomitrella patensare xylan xylosyltransferases[J]. The Plant Journal, 2014, 80(2):207-215. DOI: 10.1111/tpj.12641.
doi: 10.1111/tpj.12641 |
[27] |
LEE C, O’NEILL M A, TSUMURAYA Y, et al. The irregular xylem 9 mutant is deficient in xylan xylosyltransferase activity[J]. Plant and Cell Physiology, 2007, 48(11):1624-1634. DOI: 10.1093/pcp/pcm135.
doi: 10.1093/pcp/pcm135 |
[28] |
PEÑA M J, ZHONG R Q, ZHOU G K, et al. Arabidopsis irregular xylem 8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynjournal[J]. The Plant Cell, 2007, 19(2):549-563. DOI: 10.1105/tpc.106.049320.
doi: 10.1105/tpc.106.049320 |
[29] |
LI L, HUANG J F, QIN L X, et al. Two Cotton fiber-associated glycosyltransferases, GhGT43A1 and GhGT43C1, function in hemicellulose glucuronoxylan biosynjournal during plant development[J]. Physiologia Plantarum, 2014, 152(2):367-379. DOI: 10.1111/ppl.12190.
doi: 10.1111/ppl.2014.152.issue-2 |
[30] | CHINIQUY D, VARANASI P, OH T, et al. Three novel rice genes closely related to the Arabidopsis IRX9, IRX9L, and IRX14 genes and their roles in xylan biosynjournal[J]. Frontiers in Plant Science, 2013, 4:83. DOI: 10.3389/fpls.2013.00083. |
[31] |
RATKE C, PAWAR P M A, BALASUBRAMANIAN V K, et al. Populus GT43 family members group into distinct sets required for primary and secondary wall xylan biosynjournal and include useful promoters for wood modification[J]. Plant Biotechnology Journal, 2015, 13(1):26-37. DOI: 10.1111/pbi.12232.
doi: 10.1111/pbi.2014.13.issue-1 |
[32] |
WEI Z, LAMPUGNANI E R, PICARD K L, et al. Asparagus IRX9, IRX10, and IRX14A are components of an active xylan backbone synthase complex that forms in the Golgi apparatus[J]. Plant Physiology, 2016, 171(1):93-109.DOI: 10.1104/pp.15.0191.
doi: 10.1104/pp.15.01919 |
[33] |
TAMURA K, STECHER G, PETERSON D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12):2725-2729. DOI: 10.1093/molbev/mst197.
doi: 10.1093/molbev/mst197 |
[34] |
HÖRNBLAD E, ULFSTEDT M, RONNE H, et al. Partial functional conservation of IRX10 homologs in Physcomitrella patens and Arabidopsis thaliana indicates an evolutionary step contributing to vascular formation in land plants[J]. BMC Plant Biology, 2013, 13(1):3. DOI: 10.1186/1471-2229-13-3.
doi: 10.1186/1471-2229-13-3 |
[35] |
TAUJALE R, YIN Y B. Glycosyltransferase family 43 is also found in early eukaryotes and has three subfamilies in charophycean green algae[J]. PLoS One, 2015, 10(5):e0128409. DOI: 10.1371/journal.pone.0128409.
doi: 10.1371/journal.pone.0128409 |
[1] | 王质璞, 李卓蓉, 罗志斌, 邓澍荣. PagAPY1基因调控银腺杨耐旱性的作用机制研究[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 105-112. |
[2] | 何旭东, 隋德宗, 王红玲, 黄瑞芳, 郑纪伟, 王保松. 中国柳树遗传育种研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 51-63. |
[3] | 张群, 及晓宇, 贺子航, 王智博, 田增智, 王超. 白桦BpGRAS1基因的克隆及耐盐功能分析[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 38-46. |
[4] | 李寒,李鑫,徐勇,陈牧,余世袁,勇强. 竹加工废弃物制备低聚木糖和乙醇[J]. 南京林业大学学报(自然科学版), 2015, 39(05): 145-149. |
[5] | 李飞,解静聪,李琦,张雪松,赵林果. 木聚糖酶XynB分子Ser/Thr 平面导入精氨酸对酶热稳定性的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(04): 107-112. |
[6] | 侯光北,冯年捷,张琳,戴铠,王崎,翟华敏,薛希华. 麦草碱性亚硫酸盐制浆废液的木聚糖酶解特性[J]. 南京林业大学学报(自然科学版), 2014, 38(04): 113-117. |
[7] | 欧阳嘉,连之娜,林惊雷,李鑫,宋向阳. 改良木聚糖酶辅助漂白芦苇浆的工艺研究[J]. 南京林业大学学报(自然科学版), 2012, 36(02): 25-28. |
[8] | 刘艳萍,张洋*,江华. 木聚糖酶处理对麦秸纤维板吸着等温线的影响[J]. 南京林业大学学报(自然科学版), 2011, 35(05): 79-82. |
[9] | 刘蕾,勇强,余世袁. 木聚糖酶分级对高温降解木聚糖酶水解的影响[J]. 南京林业大学学报(自然科学版), 2011, 35(03): 21-. |
[10] | 周楫,景宜,尤纪雪,连海兰,安鑫南. 漆酶/木聚糖酶体系去除废新闻纸脱墨浆中胶黏物的研究[J]. 南京林业大学学报(自然科学版), 2011, 35(03): 22-. |
[11] | 尤纪雪,朱鎏晴,连之娜,欧阳嘉*. 重组木聚糖酶预处理对麦草浆漂白性能的影响[J]. 南京林业大学学报(自然科学版), 2010, 34(04): 57-60. |
[12] | 王楚,翟华敏*,刘婧怡,戴铠,吴文娟. 耐热耐碱木聚糖酶对马尾松KP浆的助漂性能[J]. 南京林业大学学报(自然科学版), 2010, 34(03): 31-34. |
[13] | 江华,薄开静. 聚糖对绿色木霉木聚糖酶的吸附规律[J]. 南京林业大学学报(自然科学版), 2008, 32(06): 19-23. |
[14] | 顾阳,王艳,勇强,余世袁*. 低纤维素酶活木聚糖酶对麦草浆的辅助漂白作用[J]. 南京林业大学学报(自然科学版), 2006, 30(03): 19-22. |
[15] | 欧阳嘉1,2,谢承佳2,李双2,何冰芳2. 福寿螺糖苷水解酶基因核心片断的克隆及序列分析[J]. 南京林业大学学报(自然科学版), 2006, 30(02): 29-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||