
3种辐射保护剂对60Co-γ射线辐照小苍兰的保护效应
闵可怜, 王丹, 湛晓蝶, 陈敏, 岳海燕, 何毅, 刘亮, 黎青, 向毅, 李建伟
南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (3) : 11-18.
3种辐射保护剂对60Co-γ射线辐照小苍兰的保护效应
Effects of three radiation protection agents on the 60Co‑γ radiation irradiated freesia
采用水杨酸(SA)、褪黑素(MT)、赤霉素(GA)3种辐射保护剂对60Co-γ射线辐射处理后的小苍兰进行保护处理,以期减轻植物辐照后的损伤,降低辐照后种球的死亡率,增加其存活率和开花率,为花卉品种培育与改良提供行之有效的技术支持和数据参考。
以小苍兰为研究对象,用辐射剂量分别为55、65、75 Gy的60Co-γ射线辐照处理小苍兰种球后,采用150、300、450 mg/L的SA和5、10、15 mg/L的MT和GA对其进行浸泡处理,以未使用保护剂的辐照组和清水处理组为对照,研究辐射保护剂对小苍兰生长发育指标及丙二醛含量(MDA)和超氧化物歧化酶(SOD)的影响。
辐射剂量为55 Gy时,150 mg/L SA处理组小苍兰发芽率和存活率分别达到了86.87%、90.00%,显著高于辐射对照组,株高比辐射对照组高144.63%,叶片数和叶片面积分别是辐射对照组的5.96、1.78倍,开花率达到最大值33.33%。当辐照剂量为65 Gy时,3种辐射保护剂的保护效果为低浓度小于高浓度,其中450 mg/L SA处理组小苍兰存活率达到79.67%,相对辐射对照组提高了91.68%,且15 mg/L MT处理组小苍兰小花朵数比辐射对照高出187.77%。在高剂量辐照(75 Gy)处理下,高浓度保护剂优于低浓度,其中450 mg/L SA处理组小苍兰存活率、株高、开花率分别较辐射对照组提高了122.23%、268.17%、500.60%,叶片数和叶片面积分别是辐射对照组的2.22倍、2.57倍。15 mg/L MT和GA处理可提高65、75 Gy剂量组小苍兰的小花朵数,相对于辐射对照组分别多7.83、5.68朵。并且使用3种不同浓度辐射保护剂后,均能显著降低辐射小苍兰MDA含量,延缓辐射后SOD 膜保护酶活性上升幅度,证明辐射保护剂能有效促进辐射损伤修复,减轻生理损伤。
辐照后使用SA、MT和GA浸泡处理能有效减缓小苍兰辐照损伤,起到辐射保护的作用。在55 Gy辐射剂量下,150 mg/L SA和15 mg/L MT保护效果较好,而在65和75 Gy辐射剂量下,450 mg/L SA、15 mg/L MT和15 mg/L GA保护效果较好。
Bulbs of ornamental plants have considerable economic value; however, seed degeneration is a major concern in several bulbous flower varieties due to its adverse effects on reproduction. Radiation mutagenesis bree?ding can help increase variation frequencies, enlarge variation ranges, and induce morphology?associated mutations, which may produce novel varieties within short time. However, plant survival is severely reduced due to physiological and genetic damage caused by 60Co?γ radiation treatments, and the frequency of beneficial mutations is low and insufficient. We used salicylic acid (SA), melatonin (MT) and gibberellin (GA) in order to reduce radiation?induced damage and death rates and to increase survival and flowering rates in freesia bulbs after 60Co?γ radiation treatments. The results may provide important technical information and reference values for cultivation and improvement of flower varieties.
Freesia (Freesia hybrida) bulbs were treated using 60Co?γ radiation at dosages of 55, 65 or 75 Gy after soaking treatments with SA at concentrations of 150, 300 or 450 mg/L and MT and GA at 5, 10 or 15 mg/L. Irradiated bulbs not treated with protective agents and bulbs treated with water only were used as controls. Effects of radiation protection on growth and development were assessed by measuring growth indicators and content of malondialdehyde (MDA) and superoxide dismutase (SOD).
At a radiation dose of 55 Gy, germination and survival rates in freesia bulbs treated with 150 mg/L SA were 86.87% and 90.00%, respectively, and were significantly higher than those of the radiation control group; plant height of freesia was 144.63% larger than that of the radiation control, and the number of leaves and total leaf area were 5.96? and 1.78?fold higher, respectively, compared to the radiation control. Flowering rates showed a maximum at 33.33%. At a radiation dose of 65 Gy, the three tested agents produced protective effects in a dose?dependent manner. In the 450 mg/L SA treatment, the survival rate was 79.67%, which was 91.68% higher than that in the radiation control; the number of small flowers in plants treated with 15 mg/L MT was 187.77% higher than that in the radiation control. In the high?dose irradiation treatment (75 Gy), high concentrations of protective agents showed better effects than low concentrations. Survival rate, plant growth and flowering rate in freesia bulbs treated with 450 mg/L SA were 122.23%, 268.17% and 500.60% higher, respectively, compared to the radiation control, and the number of leaves and total leaf area were 2.22? and 2.57?fold higher, respectively, than in the radiation control. Treatments with 15 mg/L MT and GA produced higher numbers of small flowers in freesia bulbs irradiated at 65 and 75 Gy with 7.83 and 5.68 more flowers, respectively, compared to the radiation control. Moreover, radiation protectants at different concentrations can significantly reduce the levels of MDA in irradiated freesia plants and delay the increase in SOD membrane?protective enzyme activity after radiation, suggesting that radiation protection agents can effectively promote the repair of radiation damage and alleviate physiological damage.
Treatments with SA, MT and GA after irradiation can effectively mitigate radiation damage and may thus be important for radiation protection. Treatments with 150 mg/L SA and 15 mg/L MT showed better protective effects than that of other groups of protective agents after radiation at 55 Gy, whereas under radiation doses of 65 and 75 Gy, 450 mg/L SA, 15 mg/L MT and 15 mg/L GA showed most effective radiation protection.
小苍兰 / 60Co-γ辐射 / 水杨酸 / 褪黑素 / 赤霉素 / 辐射保护
freesia / 60Co?γ radiation / salicylic acid / melatonin / gibberellin / radiation protection
1 | 刘玉艳, 于凤鸣, 李娜. 水杨酸和硼酸处理对小苍兰生长发育的影响[J].河北科技师范学院学报, 2002,16(2):15-17. LIU Y Y, YU F M, LI N. Effect of SA and BA on growth and development of Freesia refracta Klatt[J]. Journal of Hebei Vocation?Technical Teachers College,2002, 16(2):15-17. DOI:10.3969/j.issn.1672-7983. 2002.02.005. |
2 | 周凌瑜. 小苍兰ISSR分子标记[D].上海: 上海交通大学, 2008. ZHOU L Y. Inter?simple sequence repeat (ISSR) analysis in Freesia refracta[D]. Shanghai: Shanghai Jiaotong University,2008. |
3 | 舒祯,唐东芹.小苍兰的研究现状与进展[J].江苏农业科学,2010,38(3):192-196. SHU Z,TANG D Q. Research progress on Freesia hybrida[J]. Jiangsu Agricultural Sciences,2010,38(3):192-196.DOI:10.15889/j.issn.1002-1302.2010.03.122. |
4 | 吴晨炜,周凌瑜,王秀丽,等.小苍兰种质遗传多样性的ISSR分析[J].植物研究,2009,29(3):357-361. WU C W,ZHOU L Y,WANG X L,et al.ISSR analysis of genetic diversity in Freesia refracta germplasm[J]. Bulletin of Botanical Research,2009,29(3):357-361. |
5 | ARI E,DJAPO H,MUTLU N,et al. Creation of variation through Gamma irradiation and polyploidization in Vitex agnucastus L[J]. Scientia Horticulturae,2015,195:74-81.DOI:10.1016/j.scienta.2015.08.039. |
6 | WI S G,CHUNG B Y,KIM J H,et al. Ultrastructural changes of cell organelles in Arabidopsis stems after Gamma irradation[J]. Journal of Plant Biology,2005,48(2):195-200.DOI:10.1007/bf03030408. |
7 | 任少雄,王丹,李卫锋,等. 60Co?γ射线辐射唐菖蒲鳞茎诱变育种试验[J].福建林业科技,2006,33(2):34-36,66. REN S X,WANG D,LI W F,et al. Study on mutation breeding of Gladiolus hybridus radiated by 60Co?γ ray[J] Journal of Fujian Forestry Science and Technology,2006,33(2):34-36,66.DOI:10.13428/j.cnki.fjlk.2006.02.008. |
8 | 王丹,任少雄,李卫锋,等. 电子束和离子注入处理鸡冠花种子对当代(M0)植株生长发育影响的初步研究[J]. 辐射研究与辐射工艺学报,2006,24(3):188-192. WANG D, REN S X, LI W F, et al. Preliminary study on the effects of electron beam and ion?implantation on the growth and development of contemporary (M0) cockscomb seeds[J]. Journal of Radiation Research and Radiation Technology, 2006,24(3):188-192.DOI:10.3969/j.issn.1000-3436.2006.03.015. |
9 | 贾林贵,辜义芬,杨建明.利用慢照射育成小麦新品种西辐7号[J].核农学通报,1993,14(2):8-10. JIA L G,GU Y F,YANG J M.Breeding of new wheat variety Xifu 7 by slow irradiation [J]. Bulletin of Nuclear Agriculture,1993,14(2):8-10. |
10 | 李春兰,朱肖梅.咖啡因前处理与后处理对小麦种子M1代辐射损伤修复抑制效应的比较[J].核农学通报,1988,9(1):15-16.LI C L,ZHU X M. Comparison of the inhibitory effects of caffeine pretreatment and post?treatment on the repair of radiation damage in wheat seeds of generation M1 [J]. Bulletin of nuclear agronomy,1988,9(1):15-16. |
11 | BORSANI O, VALPUESTA V, BOTELLA M A. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in arabidopsis seedlings1[J]. Plant Physiology, 2001, 126(3):1024-1030. DOI:10.1104/pp.126.3.1024. |
12 | SHAKIROVA F M,SAKHABUTDINOVA A R,BEZRUKOVA M V,et al. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity[J]. Plant Science,2003,164(3):317-322. DOI:10.1016/s0168?9452(02)00415?6. |
13 | 张鸽香,周丽琴. 水杨酸对水培风信子生长及开花的影响[J]. 南京林业大学学报(自然科学版),2013,37(5):20-24.ZHANG G X,ZHOU L Q.Effects of SA on the growth and flowering of hydroponics Hyacinthus orientalis[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2013,37(5):20-24. DOI:10.3969/j.issn.1000-2006.2013.05.004. |
14 | KOC M,TAYSI S,BUYUKOKUROGLU M E,et al. Melatonin protects rat liver against irradiation?induced oxidative injury[J]. Journal of Radiation Research,2003,44(3):211-215.DOI:10.1269/jrr.44.211. |
15 | 王英利,王英娟,郝建国,等.褪黑素对绿豆在增强UV?B辐射下的防护作用[J].光子学报,2009,38(10):2629-2633.WANG Y L,WANG Y J,HAO J G,et al. Defend effects of melatonin on mung bean under UV?B irridiation[J]. Acta Photonica Sinica,2009,38(10):2629-2633. |
16 | 李玲. 60Co?γ射线对牡丹种子萌发特性、染色体结构及幼苗生长的影响[D].泰安:山东农业大学, 2014. LI L. The influence of 60Co?γ radiation on seed characteristics and chromosome structure and seedling growth in Paeonia suffruticosa[D]. Taian:Shandong Agricultural University,2014. |
17 | 黄海涛,王丹,周丽娟,等.电子束和赤霉素复合处理一串红干种子对M1代生长发育的影响[J].西北农业学报,2007,16(4):253-256. HUANG H T,WANG D,ZHOU L J,et al. Effect of combined treatments of electron beam radiation and GA on growth and development of M1 of scarlet sage dry seeds[J]. Acta Agriculturae Boreali?occidentalis,2007,16(4):253-256. DO I:10.3969/j.issn.1004-1389.2007.04.060. |
18 | 陈建勋. 植物生理学试验指导 [M].北京:中国农业出版社,2006:150-185. CHEN J X. Guidance on plant physiology experiments[M]. Beijing: China Agricultural Press, 2006: 150-185. |
19 | 兰凤. 60Co?γ射线对两种露地菊品种辐射诱变效应的研究[D]. 哈尔滨:东北林业大学, 2018. LAN F. 60Co?γ ray irradiation mutagenic effect on two kinds of chrysanthemum varieties [D]. Harbin: Northeast Forestry University, 2018. |
20 | KUMAR A,BASSI F M,MICHALAK DE JIMENEZ M K,et al.Radiation hybrids:a valuable tool for genetic,genomic and functional analysis of plant genomes[M]//Genomics of Plant Genetic Resources. Dordrecht:Springer Netherlands,2013:285-318. DOI:10.1007/9 78?94?007?7572?5_12. |
21 | 赵孔南,王彩莲,慎玫,等. 氯化钠对γ辐射诱发水稻M2代突变的修饰效应[J].浙江大学学报(农业与生命科学版),1990,16(3):247-251. ZHAO K N, WANG C L, SHEN M, et al.Modification effects of sodium chloride on mutation induced by Gamma?rays in M2 generation of rice[J]. Zhejiang Academy of Agriculture,1990,16(3):247-251. |
22 | 刘玲,王丹,黎熠睿,等. 60Co?γ射线对小苍兰的生物学效应[J].南京林业大学学报(自然科学版),2019,43(1):186-192. LIU L,WANG D,LI Y R,et al. The biological effects of 60Co?γ rays on Freesia refracta[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2019,43(1):186-192. DOI:10.3969/j.issn.1000-2006.201801024. |
23 | 黄建昌,肖艳. 番木瓜种子的辐射生物学效应研究[J].西南大学学报(自然科学版),2003, 25(3):203-206. HUANG J C, XIAO Y ,Biological effects of irradiation on (Carica papaya) seeds combined with giberellin treatment[J]. Jurnal of Southwest University Natural Science Edition 2003, 25(3):203-206. DOI:10.3969/j.issn.1673-9868.2003.03.005. |
24 | 黄建昌. NAA和GA3对枳壳萌动种子的辐射保护作用[J].仲恺农业工程学院学报,1990, 3(1):12-18. HUANG J C . The radiation protection of NAA and GA3 on P. trifoliata Raf. seeds irradiated with γ?rays[J].Journal of Zhongkai Agrotechnical College.1990, 3(1):12-18. |
25 | RIVAS?SAN VICENTE M,PLASENCIA J. Salicylic acid beyond defence:its role in plant growth and development[J]. Journal of Experimental Botany,2011,62(10):3321-3338.DOI:10.1093/jxb/err031. |
26 | DENG B L,YANG K J,ZHANG Y F,et al. Can antioxidant's reactive oxygen species (ROS) scavenging capacity contribute to aged seed recovery? Contrasting effect of melatonin,ascorbate and glutathione on germination ability of aged maize seeds[J]. Free Radical Research,2017,51(9/10):765-771.DOI:10.1080/10715762.2017.1375099. |
27 | 李瑜,王萍,耿兴敏,等. 60Co?γ辐射对桂花幼苗生长及生理指标的影响[J]. 西北农业学报,2017,26(1):61-69.LI Y,WANG P,GENG X M,et al. Effect of 60Co?γ rays irradiation on seedling growth and physiological indexes of Osmanthus fragrans[J]. Acta Agriculture Boreali?occidentalis Sinica,2017,26(1):61-69.DOI:10.7606/j.issn.1004-1389.2017.01.008. |
/
〈 |
|
〉 |