
生物质炭对杨树人工林土壤微生物群落的影响
Effects of biochars pyrolyzed at different temperatures on soil microbial community in a poplar plantation in coastal eastern China
研究不同温度制备的生物质炭对杨树人工林土壤微生物群落结构和酶活性影响的差异,探究土壤pH、微生物群落结构及其酶活性之间的关系,为深入研究生物质炭对土壤碳循环的影响提供参考。
以江苏省东台林场的杨树人工林土壤为研究对象,开展了60 d的室内培养实验,设计不添加生物质炭的对照(CK)、添加以水稻为原料在300 ℃和500 ℃制备的生物质炭(B300和B500)共3个处理,分别在培养0、1、7、30和60 d时破坏性采集土壤样品,利用磷脂脂肪酸法(PLFAs)测定土壤微生物群落结构,通过比色法测定土壤β-D-葡萄糖苷酶、纤维二糖糖苷酶、多酚氧化酶和漆酶活性,利用电极法测定土壤pH。
生物质炭对土壤微生物群落结构的影响呈现出明显的阶段性。与CK相比,培养7 d时,B300和B500处理的细菌相对丰度分别提高了5.87%和11.8%(P = 0.016,F = 8.85,df = 8),而革兰氏阴性(G-)菌/革兰氏阳性(G+)菌分别降低了7.47%和21.4%(P = 0.093,F = 4.55,df = 8)。与此同时,放线菌的相对丰度分别降低了15.2%和17.5%(P = 0.005,F = 14.00,df = 8);培养30 d时,生物质炭对土壤微生物群落结构的影响恰好与培养7 d时相反,并且同样是B500比B300处理的影响程度大;培养60 d时,生物质炭没有对土壤微生物群落结构产生明显影响。平均而言,与CK相比,B500处理的β-D-葡萄糖苷酶活性和纤维二糖糖苷酶活性分别提高了21.2%(P = 0.031,F = 6.53,df = 8)和34.7%(P = 0.011,F = 10.31,df = 8),而B300处理的2个水解酶活性没有明显变化,B300和B500处理的多酚氧化酶活性分别提高了33.8%和40.1%(P = 0.021,F = 7.80,df = 8)。相关分析表明,土壤pH不是影响土壤微生物群落结构和酶活性的关键因子,并且微生物群落结构改变不是引起酶活性变化的主要原因。
300 ℃和500 ℃制备的生物质炭对杨树人工林土壤微生物群落结构和酶活性影响的方向一致,但500 ℃比300 ℃制备的生物质炭对土壤徽生物群落的影响程度更大,这可能是由于500 ℃制备的生物质炭含有更多难分解碳而引起。
To provide a basis for an in depth study of the impacts of biochar on soil carbon cycling, we examined the effects of biochars pyrolyzed at different temperatures on the soil microbial activity and community structure in a poplar plantation as well as on the relationship with soil pH.
Poplar plantation soil was sampled from Dongtai Forest Farm, Jiangsu Province, and incubated in a laboratory for 60 days under three treatments, soil without biochar amendment (CK) and soils amended with biochars pyrolyzed at 300 ℃ and 500 ℃ (B300 and B500), using rice as the raw material. Incubated soils were destructively sampled on days 0, 1, 7, 30 and 60, respectively. The soil microbial community structure was analyzed using phospholipid fatty acids (PLFAs), whereas β?D-glucosidase, cellobiosidase, poly phenol oxidase, and laccase activities were analyzed by colorimetric methods, and soil pH was analyzed using a pH electrode.
The effects of biochars on soil microbial community structure were different during the incubation. On day 7, the relative abundance of bacteria increased by 5.87% and 11.8% (P = 0.016, F = 8.85, df = 8), the ratio of gram-negative (G-) bacteria to gram-positive (G+) bacteria decreased by 7.47% and 21.4% (P = 0.093, F = 4.55, df = 8), and the relative abundance of actinomycetes decreased by 15.2% and 17.5% (P = 0.005, F = 14.00, df = 8) following the B300 and B500 treatments, respectively, than following the CK treatment. In contrast, the opposite effects were observed on soil microbial community structure on day 30, and the effects were greater following the B500 treatment than following the B300 treatment. However, neither of the biochars affected soil microbial community structure on day 60. On average, compared with those following the CK treatment, β?D?glucosidase and cellobiosidase activities increased by 21.2% (P = 0.031, F = 6.53, df = 8) and 34.7% (P = 0.011, F = 10.31, df = 8), respectively, following the B500 treatment, whereas phenol oxidase activity increased by 33.8% and 40.1% (P = 0.021, F = 7.80, df = 8) following B300 and B500 treatments, respectively. The correlation analysis indicated that soil pH was not the key factor influencing soil microbial community structure; in addition, enzyme activity and the change in soil enzyme activity did not primarily result from the change in microbial community structure.
Biochars pyrolyzed at 300 ℃ and 500 ℃ resulted in the shifted soil microbial community structure and influenced enzyme activities in the same direction, although the biochar pyrolyzed at 500 ℃ showed greater effects than that pyrolyzed at 300 ℃, which was probably due to the higher content of recalcitrant carbon contained in the biochar pyrolyzed at 500 ℃.
杨树人工林 / 生物质炭 / 制备温度 / 磷脂脂肪酸 / 土壤微生物 / 酶活性
poplar plantation / biochar / pyrolysis temperature / PLFAs / soil microbe / enzyme activity
1 | CHENG L, ZHANG N F, YUAN M T, et al. Warming enhances old organic carbon decomposition through altering functional microbial communities[J]. Isme J, 2017, 11(8): 1825–1835. DOI: 10.1038/ismej.2017.48. |
2 | SINANBAUGH R L, LAUBER C L, WEINTRAUB M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecol Lett, 2008, 11(11): 1252–1264. DOI: 10.1111/j.1461-0248.2008.01245.x. |
3 | LEHMANN J, GAUNT J, RONDON M. Bio?char sequestration in terrestrial ecosystems: a review[J]. Mitig Adapt Strat Gl, 2006, 11(2): 403–427. DOI: 10.1007/s11027-005-9006-5. |
4 | MUKHERJEE A, ZIMMERMAN A R. Organic carbon and nu?trient release from a range of laboratory?produced biochars and biochar?soil mixtures[J]. Geoderma, 2013, 193: 122–130. DOI: 10.1016/j.geoderma.2012.10.002. |
5 | 周之栋, 卜晓莉, 吴永波, 等. 生物炭对土壤微生物特性影响的研究进展[J]. 南京林业大学学报(自然科学版), 2016, 40(6): 1–8. |
5 | ZHOU Z D, BU X L, WU Y B, et al. Research advances in biochar effects on soil microbial properties[J]. J Nanjing For Univ(Nat Sci Ed), 2016, 40(6): 1–8. DOI: 10. 3969/j.issn.1000-2006.2016.06.001. |
6 | 王国兵, 王瑞, 徐瑾, 等. 生物炭对杨树人工林土壤微生物生物量碳、氮、磷及其化学计量特征的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(2): 1–6. |
6 | WANG G B, WANG R, XU J, et al. Effects of biochar application on microbial biomass C, N, P and stoichiometry characteristics of poplar plantation soil[J]. J Nanjing For Univ(Nat Sci Ed), 2019, 43(2): 1–6. DOI: 10.3969/j.issn.1000-2006.201803022. |
7 | SINGH B, SINGH B P, COWIE A L. Characterisation and eva?luation of biochars for their application as a soil amendment[J]. Aust J Soil Res, 2010, 48(7): 516–525. DOI: 10.1071/sr10058. |
8 | WETTERSTEDT J ? M, PERSSON T, ?GREN G I. Temperature sensitivity and substrate quality in soil organic matter decomposition: results of an incubation study with three substrates[J]. Global Change Biol, 2009, 16(6): 1806–1819. DOI: 10.1111/j.1365-2486.2009.02112.x. |
9 | DEMPSTER D N, GLEESON D B, SOLAIMAN Z M, et al. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil[J]. Plant Soil, 2012, 354(1/2): 311–324. DOI: 10.1007/s11104-011-1067-5. |
10 | 李明, 李忠佩, 刘明, 等. 不同秸秆生物炭对红壤性水稻土养分及微生物群落结构的影响[J]. 中国农业科学, 2015, 48(7): 1361–1369. |
10 | LI M, LI Z P, LIU M, et al. Effects of different straw biochar on nutrient and microbial community structure of a red soil paddy soil[J]. Sci Agric Sin, 2015, 48(7): 1361–1369. DOI: 10.3864/j.issn.0578-1752.2015.07.11. |
11 | BAMMINGER C, ZAISER N, ZINSSER P, et al. Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil[J]. Biol Fert Soils, 2014, 50(8): 1189–1200. DOI: 10.1007/s00374-014-0968-x. |
12 | RUTIGLIANO F A, ROMANO M, MARZAIOLI R, et al. Effect of biochar addition on soil microbial community in a wheat crop[J]. Eur J Soil Biol, 2014, 60: 9–15. DOI: 10.1016/j.ejsobi.2013.10.007. |
13 | WANG R Z, GIBSON C D, BERRY T D, et al. Photooxidation of pyrogenic organic matter reduces its reactive, labile C pool and the apparent soil oxidative microbial enzyme response[J]. Geoderma, 2017, 293: 10–18. DOI: 10.1016/j.geoderma.2017.01.011. |
14 | GIBSON C, HATTON P J, BIRD J A, et al. Tree taxa and pyro?lysis temperature interact to control pyrogenic organic matter induced native soil organic carbon priming[J]. Soil Biol Biochem, 2018, 119: 174–183. DOI: 10.1016/j.soilbio.2018.01.022. |
15 | AMELOOT N, DE NEVE S, JEGAJEEVAGAN K, et al. Short?term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils[J]. Soil Biol Biochem, 2013, 57: 401–410. DOI: 10.1016/j.soilbio.2012.10.025. |
16 | 方精云, 陈安平. 中国森林植被碳库的动态变化及其意义[J]. 植物学报, 2001, 43(9): 967–973. |
16 | FANG J Y, CHEN A P. Dynamic forest biomass carbon pools in China and their significance[J]. Acta Bot Sin, 2001, 43(9): 967–973. DOI:10.3321/j.issn:1672-9072.2001.09.014. |
17 | 国家林业局森林资源管理司. 第七次全国森林资源清查及森林资源状况[J]. 林业资源管理, 2010(1): 1–8. Department of Forest Resources Management, Administration of Forestry of China. The sevevth national forest resources inventory and the status of forest resources[J]. Forest Resources Management, 2010(1): 1–8. DOI:10.3969/j.issn.1002-6622.2010.01.001. |
18 | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
18 | LU R K. Methods for chemical analysis of soil agriculture[M]. Beijing: China Agriculture Science and Technology Press, 2000. |
19 | LU W W, DING W X, ZHANG J H, et al. Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect[J]. Soil Biol Biochem, 2014, 76: 12–21. DOI: 10.1016/j.soilbio.2014.04.029. |
20 | LUO Y, DURENKAMP M, DE NOBILI M, et al. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH[J]. Soil Biol Biochem, 2011, 43(11): 2304–2314. DOI: 10.1016/j.soilbio. 2011.07.020. |
21 | LU W W, DING W X, ZHANG J H, et al. Nitrogen amendment stimulated decomposition of maize straw?derived biochar in a sandy loam soil: a short?term study[J]. Plos One, 2015, 10(7): e0133131. DOI: 10.1371/journal.pone.0133131. |
22 | ?FROSTEG?RD, TUNLID A, B??TH E. Microbial biomass measured as total lipid phosphate in soils of different organic content[J]. J Microbiol Methods, 1991, 14(3): 151–163. DOI: 10.1016/0167-7012(91)90018-1. |
23 | ALLISON S D, VITOUSEK P M. Responses of extracellular enzymes to simple and complex nutrient inputs[J]. Soil Biol Biochem, 2005, 37(5): 937–944. DOI: 10.1016/j.soilbio.2004.09.014. |
24 | WALDROP M, BALSER T, FIRESTONE M. Linking microbial community composition to function in a tropical soil[J]. Soil Biol Biochem, 2000, 32(13): 1837–1846. DOI: 10.1016/S0038-0717(00)00157-7. |
25 | 苏宝玲, 王月阳, 白震, 等. ABTS底物检测漆酶活力条件和算法比较: 以长白山两种林分土壤为例[J]. 土壤通报, 2016, 47(5): 1162–1168. |
25 | SU B L, WANG Y Y, BAI Z, et al. Comparisons of experiment conditions and calculation methods for laccase activity detection with ABTS-A case study with 2 forest stands in Changbai Mountain[J]. Chin J Soil Sci, 2016, 47(5): 1162–1168. DOI: 10.19336/j.cnki.trtb.2016.05.22. |
26 | ARTZ R R E, REID E, ANDERSON I C, et al. 2009. Long term repeated prescribed burning increases evenness in the basidiomycete laccase gene pool in forest soils[J]. Fems Microbiol Ecol,2009, 67(3): 397–410. DOI: 10.1111/j.1574-6941.2009.00650.x. |
27 | BUDAI A, RASSE D P, LAGOMARSINO A, et al. Biochar persistence, priming and microbial responses to pyrolysis temperature series[J]. Biol Fert Soils, 2016, 52(6): 749–761. DOI: 10.1007/s00374-016-1116-6. |
28 | 虞竹韵. 生物质炭引起土壤激发效应及其机理[D]. 杭州: 浙江大学, 2017. |
28 | YU Z Y. Biochar?induced soil priming effects and associated mechanisms[D]. Hangzhou: Zhejiang University, 2017. |
29 | FARRELL M, KUHN T K, MACDONALD L M, et al. Microbial utilisation of biochar?derived carbon[J]. Sci Total Environ, 2013, 465(6): 288–297. DOI: 10.1016/j.scitotenv. 2013. 03.090. |
30 | MUHAMMAD N, DAI Z M, XIAO K C, et al. Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical pro?perties[J]. Geoderma, 2014, 226/227: 270–278. DOI: 10.1016/j.geoderma.2014.01.023. |
31 | SHENG Y Q, ZHAN Y, ZHU L Z. Reduced carbon sequestration potential of biochar in acidic soil[J]. Sci Total Environ, 2016, 572: 129–137. DOI: 10.1016/j.scitotenv.2016.07.140. |
32 | YU Z, CHEN L, PAN S, et al. Feedstock determines biochar?induced soil priming effects by stimulating the activity of specific microorganisms[J]. Eur J Soil Sci, 2018, 69(3): 521–534. DOI: 10.1111/ejss.12542. |
33 | SHENG Y, ZHU L. Biochar alters microbial community and carbon sequestration potential across different soil pH[J]. Sci Total Environ, 2018, 622/623: 1391–1399. DOI: 10.1016/j.scitotenv.2017.11.337. |
34 | KHADEM A, RAIESI F. Influence of biochar on potential enzyme activities in two calcareous soils of contrasting texture[J]. Geoderma, 2017, 308: 149–158. DOI: 10.1016/j.geoderma.2017.08.004. |
35 | JAIN S, MISHRA D, KHARE P, et al. Impact of biochar amendment on enzymatic resilience properties of mine spoils[J]. Sci Total Environ, 2016, 544: 410–421. DOI: 10.1016/j.scitotenv.2015.11.011. |
36 | LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota: a review[J]. Soil Biol Biochem, 2011, 43(9): 1812–1836. DOI: 10.1016/j.soilbio.2011.04.022. |
37 | MUKHERJEE A, LAL R, ZIMMERMAN A R. Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil[J]. Sci Total Environ, 2014, 487: 26–36. DOI: 10.1016/j.scitotenv.2014.03.141. |
38 | 韩剑宏, 李艳伟, 姚卫华, 等. 玉米秸秆和污泥共热解制备的生物质炭及其对盐碱土壤理化性质的影响[J]. 水土保持通报, 2017, 37(4): 92–98, 105. |
38 | HAN J H, LI Y W, YAO W H, et al. Co?pyrolysis preparing biochar with corn straw and sewage sludge and its effects on saline soil improvement[J]. Bull Soil Water Conserv, 2017, 37(4): 92–98, 105. DOI: 10.13961/j.cnki.stbctb.2017.04.016. |
39 | YANG F, CAO X D, GAO B, et al. Short?term effects of rice straw biochar on sorption, emission, and transformation of soil NH4+?N[J]. Environ Sci Pollut Res, 2015, 22(12): 9184–9192. DOI: 10.1007/s11356-014-4067-1. |
40 | SHEN C C, SHI Y, FAN K K, et al. Soil pH dominates elevational diversity pattern for bacteria in high elevation alkaline soils on the Tibetan Plateau[J]. Fems Microbiol Ecol, 2019, 95(2):1-9. DOI: 10.1093/femsec/fiz003. |
41 | 虞璐. 生物质炭对酸化土壤的改良效应及其对土壤硝化作用的影响[D]. 杭州: 浙江大学, 2019. |
41 | YU L. The effect of biochar on acidic soil amelioration and soil nitrification[D]. Hangzhou: Zhejiang University, 2019. |
42 | LAMMIRATO G, MILTNER A, KAESTNER M. Effects of wood char and activated carbon on the hydrolysis of cellobiose by β?glucosidase from Aspergillusniger[J]. Soil Biol Biochem, 2011, 43(9): 1936–1942. DOI: 10.1016/j.soilbio.2011.05.021. |
43 | 曹延珺, 徐华东, 王立海, 等. 土壤理化性质对腐朽红松根部土壤微生物数量的影响[J]. 森林工程, 2018,34(2):45-49. |
43 | CAO Y J, XU H D, WANG L H, et al. Effect of soil physical?chemical properties on quantity of microorganisms in rhizospheric soil of rotten Korean pine[J]. Forest Engineering, 2018,34(2):45-49. DOI:10.16270/j.cnki.slgc.2018.02.002. |
44 | CHEN J H, LIU X Y, LI L Q, et al. Consistent increase in abundance and diversity but variable change in community composition of bacteria in topsoil of rice paddy under short term biochar treatment across three sites from South China[J]. Appl Soil Ecol, 2015, 91: 68–79. DOI: 10.1016/j.apsoil.2015.02.012. |
/
〈 |
|
〉 |