马尾松PmAOX基因克隆与不同逆境胁迫表达分析

孙晓波, 陈佩珍, 吴晓刚, 吴帆, 季孔庶

南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (4) : 70-78.

PDF(3429 KB)
PDF(3429 KB)
南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (4) : 70-78. DOI: 10.3969/j.issn.1000-2006.201911058
研究论文

马尾松PmAOX基因克隆与不同逆境胁迫表达分析

作者信息 +

The cloning and expression analysis of PmAOX gene from Pinus massoniana under different stress

Author information +
文章历史 +

摘要

目的

揭示马尾松(Pinus massoniana)抗氰呼吸途径的交替氧化酶(alternative oxidase,AOX)基因的功能。

方法

提取15年生马尾松不同组织RNA,运用RT-PCR及RACE技术克隆基因全长。以基因组DNA为模板,利用染色体步移法(chromosome walking,CK)克隆目的基因的启动子区域。通过qRT-PCR技术分析目的基因在不同组织及逆境胁迫下的表达。

结果

克隆获得基因全长为1 610 bp,开放阅读框(open reading finder, ORF)1 221 bp, 编码406个氨基酸,推测氨基酸含有与拟南芥AtAOX基因相同的双铁羧酸结构LET、 NERMHL、LEEA和RADE_H,将其命名为PmAOX。实时荧光定量PCR显示,PmAOX在马尾松花中表达量最高,根中最低;脱落酸(abscisic acid,ABA)(100 μmol/L)胁迫后表达量逐渐下降,持续胁迫至24 h时,表达量增加至最大;经高温(42 ℃)、H2O2、NaCl(200 mol/L)、CO2(0.08% ~ 0.10%)、低温(4 ℃)及干旱(10% PEG6000)处理后,表达量均呈现先升高后降低的趋势;高温42 ℃ 处理至3 h时表达量最高;H2O2处理4 h时,表达量最高; NaCl胁迫至6 h时,表达量最高;CO2、低温及干旱处理至12 h时,表达量最高。克隆得到PmAOX 起始密码子上游1 081bp的启动子区域,经PlantCARE分析显示PmAOX启动子区域具有CAAT-box 及TATA-box 的基本顺式作用元件和低温、干旱等多个胁迫诱导元件,同时还包括脱落酸、茉莉酸甲酯、赤霉素、水杨酸在内的激素调控元件和光及昼夜节律响应元件。

结论

PmAOX 可能与马尾松抗逆性相关,并受激素的诱导和调控。

Abstract

Objective

The objective was to understand the function of the cyanide-resistant alternate oxidase (AOX) gene on the cyanide-resistant respiration pathway in Pinus massoniana.

Method

RNA was extracted from 15-year-old P. massoniana, and the full length gene was cloned using RT-PCR and RACE. Using genomic DNA as a template, the PmAOX promoter region was cloned using chromosome walking (CK). The expression of target genes in different tissues under different kinds of stress was analyzed using qRT-PCR.

Result

A full-length 1 610 bp gene was cloned to obtain a full-length open reading frame (ORF) of 1 221 bp encoding 406 amino acids. It was speculated that the amino acid sequence included the same ferrous carboxylic acid structure LET as the ArabidopsisAtAOX gene, NERMHL, LEEA, and RADE_H, and it was named PmAOX. The real-time fluorescence quantitative analysis showed that PmAOX expression was the highest in P. massoniana flowers, while it was the lowest in roots. ABA expression (100 μmol/L) decreased under ABA (100 μmol/L) stress and peaked 24 h after ABA (100 μmol/L) stress. After high temperature (42 °C), H2O2, NaCl (200 mmol/L), CO2 (0.08% to 0.1%), low temperature (4 °C), and drought (10% PEG6000) stress, PmAOX expression increased before subsequently decreasing. The highest expression level was as follows: high temperature of 42 °C treatment at 3 h; H2O2 treatment at 4 h; NaCl stress at 6 h; CO2 , low temperature, and drought treatment at 12 h. A 1 081 bp promoter region upstream of the PmAOX start codon was cloned. Based on the PlantCARE analysis, we found that the PmAOX promoter region has basic cis-acting elements, including a CAAT-box, TATA-box, and multiple stress-inducing elements, such as low temperature and drought. It also includes hormonal regulatory elements, including abscisic acid (ABA), methyl jasmonate (MeJA), gibberellin (GA) and salicylic acid (SA), as well as light and circadian rhythm response elements.

Conclusion

PmAOX may be related to the resistance of P. massoniana, and it is induced and regulated by hormones.

关键词

马尾松 / PmAOX / 基因克隆 / 逆境胁迫 / 荧光定量 / 启动子

Key words

Pinus massoniana / PmAOX / gene cloning / adversity stress / fluorescent quantification / promoter

引用本文

导出引用
孙晓波, 陈佩珍, 吴晓刚, 吴帆, 季孔庶. 马尾松PmAOX基因克隆与不同逆境胁迫表达分析[J]. 南京林业大学学报(自然科学版). 2020, 44(4): 70-78 https://doi.org/10.3969/j.issn.1000-2006.201911058
SUN Xiaobo, CHEN Peizhen, WU Xiaogang, WU Fan, JI Kongshu. The cloning and expression analysis of PmAOX gene from Pinus massoniana under different stress[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2020, 44(4): 70-78 https://doi.org/10.3969/j.issn.1000-2006.201911058
中图分类号: S722   

参考文献

1 徐飞, 袁澍, 梁厚果, 等. 交替氧化酶和解偶联蛋白在植物线粒体中的作用及其相互关系[J]. 植物生理学报, 2009, 45(2):105-110.
1 XU F, YUAN W, LIANG H G, et al. The role of alternating oxidase and uncoupling proteins in plant mitochondria and their relationship[J]. Chinese Journal of Plant Physiology, 2009, 45(2): 105-110. DOI: 10.13592/j.cnki.ppj.2009.02.001.
2 吴强, 李红玉, 张立新, 等. 环境胁迫与植物抗氰呼吸[J]. 西北植物学报, 2003, 23(1):164-170.
2 WU Q, LI H Y, ZHANG L X, et al. Environmental stress and plant cyanide?resistant respiration[J]. Journal of Northwest Botanical Sinica, 2003, 23(1): 164-170. DOI: CNKI:SUN:DNYX.0.2003-01-032.
3 VANLERBERGHE G C, MCINTOSH L, oxidase alternative: From gene to function[J]. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48(48): 703-734. DOI: 10.1146/annurev.arplant. 48.1.703.
4 MILLENAAR, F.F, H. LAMBERS, The alternative oxidase: in vivo regulation and function[J]. Plant Biology, 2010, 5(1):2-15. DOI: 10. 1055/s-2003-37974.
5 CONSIDINE M, HOLTZAPFFEL R C, DAY D A, et al. Molecular distinction between alternative oxidase from monocots and dicots[J]. Plant Physiology, 2002, 129(3): 949-952. DOI: 10.1104/pp.004150.
6 NI Z, ZHOU P Y, XU M, et al. Development and characterization of chloroplast microsatellite markers for Pinus massoniana and their application in Pinus (Pinaceae) species[J]. Journal of Genetics, 2018, 97(2):1-7. DOI: 10.1007/s12041-018-0931-y.
7 XU C, WU X Q. Physiological and proteomic analysis of mycorrhizal Pinus massoniana inoculated with Lactarius insulsusunder drought stress[J]. Russian Journal of Plant Physiology, 2016, 63(5):709-717. DOI: 10.1134/S1021443716040178.
8 NI Z X, YE Y J, BAI T, XU M, et al. Complete chloroplast genome of Pinus massoniana (Pinaceae): Gene rearrangements, loss of ndh genes and short inverted repeats contraction expansion[J]. Molecules, 2017, 22(1):1528. DOI: 10.3390/molecules22091528.
9 季孔庶, 王章荣, 陈天华, 等. 马尾松插穗内源抑制物质的研究[J]. 林业科学, 1997, 33(2):142-151.
9 JI K S, WANG Z R, CHEN T H, et al. Studies on endogenous inhibitory substances in Pinus massoniana cuttings[J]. Forestry Science, 1997, 33(2): 142-151.
10 季孔庶,王章荣. 马尾松插穗生根能力变异的研究[J]. 南京林业大学学报, 1998, 22(3):66-70.
10 JI K S, WANG Z R. Study on variation of rooting ability of Pinus massoniana cuttings[J]. Journal of Nanjing Forestry University, 1998, 22(3):66-70. DOI: 10.3969/j.jssn.1000-2006.1998.03.015.
11 俞新妥, 卢建煌. 不同种源马尾松光合能力的比较研究[J]. 福建林学院学报, 1991,11(2):3-7.
11 YU X T, LU J H. A comparative study on the photosynthetic capacity of Pinus massoniana from different provenances[J]. Journal of Fujian Forestry College, 1991,11(2): 3-7. DOI:10.13324/j.cnki.jfcf.1991.02.001.
12 阮维程,潘婷,季孔庶. 马尾松纤维素合成酶基因PmCesA1的克隆及其分析[J]. 分子植物育种, 2015,13(4): 861-870.
12 RUAN W C,PAN T,JI K S. Cloning and analysis of cellulose synthase gene PmCesA1 from Masson pine[J]. Molecular Plant Breeding, 2015,13(4): 861-870. DOI: CNKI:SUN:FZZW.0.2015-04-035.
13 王猛. 马尾松抑制消减文库的构建及抗病性相关基因的克隆[D]. 长沙:中南林业科技大学, 2010.
13 WANG M. Construction of a subtractive library of Pinus massoniana and cloning of disease resistance related genes [D]. Changsha: Central South University of Forestry and Technology, 2010.
14 蔡琼,丁贵杰,文晓鹏. 马尾松水通道蛋白PmPIP1基因克隆及在干旱胁迫下的表达分析[J]. 浙江农林大学学报, 2016,33(2): 191-200.
14 CAI Q, DING G J, WEN X P. Cloning of aquaporin PmPIP1 gene from Pinus massoniana and its expression under drought stress[J]. Journal of Zhejiang Agriculture and Forestry University, 2016,33(2): 191-200. DOI: 10.11833/j.issn.2095-0756.2016.02.002.
15 王晓锋, 何卫龙, 蔡卫佳,等. 马尾松转录组测序和分析[J]. 分子植物育种, 2013, 11(3):385-392.
15 WANG X F, HE W L, CAI W J, et al. Sequencing and analysis of transcriptome of Masson pine[J]. Molecular Plant Breeding, 2013, 11(3):385-392. DOI: CNKI:SUN:FZZW.0.2013-03-019.
16 MCDONALD A, VANLERBERGHEG. Branched mitochondrial electron transport in the Animalia: presence of alternative oxidase in several animal phyla[J]. Iubmb Life, 2004, 56(6): 333-341. DOI: 10.1080/1521-6540400000876.
17 NEIMANIS, KARINA, STAPLES, et al. Identification, expression and taxonomic distribution of alternative oxidases in non?angiosperm plants[J]. Gene, 2013, 26(6): 275-286. DOI: 10.1016/j.gene.2013.04.072.
18 CLIFTON R, LISTER R, PARKER K L, et al. Stress?induced co?expression of alternative respiratory chain components in Arabidopsis thaliana[J]. Plant Molecular Biology, 2005, 58(2):193-194. DOI: 10.1007/s11103-005-5514-7.
19 THIRKETTLE WATTS D, MCCABE T C, CLIFTON R, et al. Analysis of the alternative oxidase promoters from soybean[J]. Plant Physiology, 2003, 133(3):1158-1161. DOI: 10.1104/pp.103.028183.
20 晏婴才, 林宏辉, 梁厚果, 等. 不同低温胁迫对烟草愈伤组织抗氰交替途径诱导和交替氧化酶表达影响的比较[J]. 植物学报, 2004, 21(3):296-305.
20 YAN Y C, LIN H H, LIANG H G, et al. Comparison of the effects of different low temperature stress on the induction of cyanide?resistant pathway and the expression of alternate oxidase in tobacco callus[J]. Chinese Journal of Plant Science, 2004, 21(3):296-305. DOI: CNKI:SUN:ZWXT.0.2004-03-006.
21 冯汉青, 马军, 李红玉,等. 黄化水稻幼苗转绿期AOX1基因家族的表达与功能分析[J]. 分子植物(英文版), 2006, 32(3):300-306.
21 FENG H Q, MA J, LI H Y, et al. Expression and functional analysis of AOX1 gene family in yellowing rice seedlings during greening[J]. Molecular Plants, 2006, 32(3): 300-306. DOI: CNKI:SUN:ZWSI.0.2006-03-006.
22 WANG J, WANG X, LIU C, et al. The NgAOX1a gene cloned from Nicotianaglutinosa is implicated in the response to abiotic and biotic stresses[J]. Bioscience Reports, 2008, 28(5):259-266. DOI: 10.1042/BSR20080025.
23 SIEDOW J N, UMBACH A L. Plant mitochondrial electron transfer and molecular biology[J]. Plant Cell, 1995, 7(7): 821-827. DOI: 10.1105/tpc.7.7.821.
24 李严曼, 朱磊, 杨景华, 等. 西瓜交替氧化酶AOX2基因的克隆与分析[J]. 果树学报, 2011(5):171-176.
24 LI Y M, ZHU L, YANG J H, et al. Cloning and analysis of watermelon oxidase AOX2 gene[J]. Journal of Fruit Science, 2011(5):171-176. DOI: CNKI:SUN:GSKK.0.2011-05-031.
25 CONSIDINE M J, DALEY D O, WHELAN J. The expression of alternative oxidase and uncoupling protein during fruit ripening in mango[J]. Plant Physiology, 2001, 126(5):1619-1629. DOI: 10.1104/pp.126.4.1619.
26 BARTOLI C G, GOMEZ F, GERGOFF G, et al. Up?regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions[J]. Journal of Experimental Botany, 2005, 56(415):1269-1276. DOI: 10.1093/jxb/eri111.
27 VALYA V, LYUDMILA S S, KLIMENTINA D, et al. Variety?specific response of wheat (Triticum aestivum L.) leaf mitochondria to drought stress[J]. Journal of Plant Research, 2009, 122(4):445-454. DOI: 10.1007/s10265-009-0225-9.
28 WEN J, LIANG H. Effects of KCN and NaN3 pretreatment on the cyanide?resistant respiration in tobacco callus[J]. Acta Bontanica Sinica, 1995, 37(9):711-717.
29 BEGCY K, MARIANO E D, MATTIELLO L, et al. An arabidopsis mitochondrial uncoupling protein confers tolerance to drought and salt stress in transgenic tobacco plants[J]. Plos One, 2011, 6(8):23776-23784. DOI: 10.1371/journal.pone.0023776.
30 李春荣. 水稻AOX1基因家族成员逆境下的表达分析及功能鉴定[D]. 合肥:安徽大学, 2013. LI C R. Expression analysis and functional identification of rice AOX1 gene family members under adverse conditions [D]. Hefei: Anhui University, 2013.
31 YAN Y C, LIN H H, LIANG H G, et al. Comparison of the effects of difterent low temperature stresses on the induction of the cyanide?resistant alternative pathway and the expression of alternative oxidase in tobacco callus[J].Chin Bull Bot, 2004, 21(3):296-305.
32 MOHANAPRIYA G, BHARADWAJ R, NOCEDA C, et al. Alternative oxidase (AOX) senses stress levels to coordinate auxin?induced reprogramming from seed germination to somatic embryogenesis-a role relevant for seed vigor prediction and plant robustness[J]. Frontiers in Plant Science, 2019, 12(2):1131-1134. DOI: 10.3389/fpls.2019.01134.
33 HILAL M. Saline stress alters the temporal patterns of xylem differentiation and alternative oxidase expression in developing soybean roots[J]. Plant Physiology, 1998, 117(3):695-701. DOI: 10.1104/pp.117.2.695.
34 ANNICCHIARICO P, NAZZICARI N, PECETTI L, et al. Pea genomic selection for Italian environments[J]. BMC Genomics, 2019(4):599-603. DOI: 10.1186/s12864-019-5920-x.
35 ANDJELKOVI? A, OLIVEIRA M T, CANNINO G, et al. Diiron centre mutations in Ciona intestinalis alternative oxidase abolish enzymatic activity and prevent rescue of cytochrome oxidase deficiency in flies[J]. Scientific Reports, 2015, 5(3):295-301. DOI: 10.1038/srep18295.
36 PURVIS A C, SHEWFELT R L. Does the alternative pathway ameliorate chilling injury in sensitive plant tissues?[J]. Physiologia Plantarum, 1993, 88(4):712-718. DOI: 10.1111/j.1399-3054.1993.tb01393.x.
37 SZABADOS L, CHARRIER B, KONDOROSI A, et al. New plant promoter and enhancer testing vectors[J]. Mol Breed, 1995, 1(4): 419–423. DOI: 10.1007/BF01248419.
38 李会宣, 董向峰, 高健. 毕赤酵母醇氧化酶基因AOX1启动子研究进展[J]. 生物技术, 2013, 1(4):87-91.
38 LI H X, DONG X F, GAO J. Advances in the promoter of pichia pastoris alcohol oxidase gene AOX1[J]. Biotechnology, 2013, 1(4): 87-91. DOI: CNKI:SUN:SWJS.0.2013-04-021.

基金

国家重点研发计划(2017YFD0600304);江苏高校优势学科建设工程资助项目

PDF(3429 KB)

Accesses

Citation

Detail

段落导航
相关文章

/