南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (5): 67-77.doi: 10.3969/j.issn.1000-2006.201912029
陈炜1(), 成铁龙2, 纪敬1, 武妍妍1, 谢田田1, 江泽平3, 史胜青1,*()
收稿日期:
2019-12-18
修回日期:
2020-06-01
出版日期:
2020-10-30
发布日期:
2020-11-19
通讯作者:
史胜青
基金资助:
CHEN Wei1(), CHENG Tielong2, JI Jing1, WU Yanyan1, XIE Tiantian1, JIANG Zeping3, SHI Shengqing1,*()
Received:
2019-12-18
Revised:
2020-06-01
Online:
2020-10-30
Published:
2020-11-19
Contact:
SHI Shengqing
摘要:
【目的】 γ-氨基丁酸(GABA)与植物的生长发育有着密切的联系。结合前期对GABA抑制杨树不定根发育的研究,对GABA支路基因家族的特征和表达模式进行研究,为进一步解释其在不定根发育中的作用奠定基础。【方法】从银白杨(Populus alba)×P. glandulosa ‘84K’(‘84K’杨)基因组中鉴定出GABA支路的PopGAD、PopGABA-T和PopSSADH 3个基因家族成员,并利用生物信息学方法分析其特征,以及与其他物种相关基因家族的亲缘关系;利用qRT-PCR研究外源GABA及其降解抑制剂vigabatrin(VGB)对各基因表达的影响。【结果】①PopGAD、PopGABA-T和PopSSADH 3个基因家族成员数量依次为6、2和2个,启动子序列中主要包含与光、激素和环境等响应相关元件。②系统进化分析表明,PopGAD家族中PopGAD6与家族其他成员亲缘关系较远;PopGABA-T和PopSSADH家族中的两个基因成员亲缘关系较近。③基因表达分析表明,不定根生长过程中GABA支路基因总体上在根中表达量高于茎和叶。外源GABA或VGB处理对PopGAD和PopGABA-T两个基因家族成员在根、茎和叶中的表达量影响程度不同,但对 PopSSADH基因家族的表达则无明显影响。【结论】 GABA支路3个基因家族在‘84K’杨树响应光、激素和环境胁迫等方面具有重要作用。外源GABA和VGB处理对PopGAD和PopGABA-T家族成员的影响较大,并且均在根中表达量最高,表明这两个基因家族在不定根生长过程中发挥着重要调控功能。这为深入解析GABA在树木不定根发生中的作用机制奠定了基础。
中图分类号:
陈炜,成铁龙,纪敬,等. 杨树GABA支路3个基因家族的鉴定和表达分析[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 67-77.
CHEN Wei, CHENG Tielong, JI Jing, WU Yanyan, XIE Tiantian, JIANG Zeping, SHI Shengqing. Identification of three gene families in the GABA shunt and their expression analysis in poplar[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(5): 67-77.DOI: 10.3969/j.issn.1000-2006.201912029.
表1
GABA支路基因qRT-PCR引物"
基因 genes | 基因ID gene ID | 上游引物(5'—3') primer sequence F (5' to 3') | 下游引物(5'—3') primer sequence R (5' to 3') |
---|---|---|---|
PopGAD1 | Pop_G17G072900.T1 | CCGCAGCTTCCTTCTCTTCA | ACTGTCTTGCGTGTGGTGAT |
PopGAD2 | Pop_G04G066512.T1 | AGTCCATATTTGTGCCCGCT | ACTCCGATCCATGTCGATGC |
PopGAD3 | Pop_G04G066513.T1 | GCATGGTACGGTCTCAAGCT | TACAGTGTTGCGCGTCGTTA |
PopGAD4 | Pop_G10G001568.T1 | CAAGGGTGCGGGAGAAATCT | CGCTACGTCGTTTTGGTTGG |
PopGAD5 | Pop_G08G046378.T1 | CCACAGTGCCATTCTTCCCT | AGATTTCTCCCGCACCCTTG |
PopGAD6 | Pop_G12G050713.T1 | GTGCAGGCTCCAGTTCTCTT | CTCACTTCCTAGCCGTGTCG |
PopGABA-T1 | Pop_G16G025220.T1 | GCTGGCTGGCAGAGTAATGA | GTGCACCAAAGACCAGCAAG |
PopGABA-T2 | Pop_G06G082070.T1 | CTGGCGCTATCATCTCCCAG | GCAATCGTCTCTGGTCCCTC |
PopSSADH1 | Pop_G10G047758.T1 | CTCACAAGGAAGAGCTGGGA | TCACCAAGAGTCGCTGGAAT |
PopSSADH2 | Pop_A08G063613.T1 | AGGATCAACAGCTGTGGGAA | AGCATCCTCTGAACAGCCTT |
UBQ | BU879229 | TGAGGCTTAGGGGAGGAACT | TGTAGTCGCGAGCTGTCTTG |
表2
杨树GABA支路家族基因成员"
名称 name | 基因ID gene ID | 编码区大小/bp CDS size | 氨基酸长度/aa length | 氨基酸分子质量/ku molecular weight | 等电点 pI |
---|---|---|---|---|---|
PopGAD1 | Pop_G17G072900.T1 | 1 203 | 400 | 45.37 | 5.80 |
PopGAD2 | Pop_G04G066512.T1 | 1 530 | 509 | 57.61 | 6.18 |
PopGAD3 | Pop_G04G066513.T1 | 1 446 | 481 | 54.45 | 5.84 |
PopGAD4 | Pop_G10G001568.T1 | 1 530 | 509 | 57.37 | 5.76 |
PopGAD5 | Pop_G08G046378.T1 | 1 527 | 508 | 57.34 | 6.08 |
PopGAD6 | Pop_G12G050713.T1 | 1 506 | 501 | 56.53 | 5.60 |
PopGABA-T1 | Pop_G16G025220.T1 | 1 545 | 514 | 56.52 | 6.58 |
PopGABA-T2 | Pop_G06G082070.T1 | 1 545 | 514 | 56.52 | 8.26 |
PopSSADH1 | Pop_G10G047758.T1 | 1 611 | 536 | 57.51 | 8.46 |
PopSSADH2 | Pop_A08G063613.T1 | 456 | 151 | 15.90 | 8.09 |
图1
杨树GABA支路3个基因家族成员基因结构和基序分析 a.基因结构(黄色表示外显子,黑线表示内含子,蓝色表示上下游非编码区 gene structure (exons were represented in yellow, introns were represented by black lines, and non-coding sequences in the upstream and downstream were represented in blue); b.保守基序分布conserved motif distribution; c.保守基序序列conserved motif sequence."
图2
杨树GABA支路3个基因家族成员启动子分析与系统发育树 小立陶宛藓Physomitrella patens:PpGAD1. Pp3c2_9290V3.1; PpGAD2. Pp3c8_7810V3.1; PpGAD3. Pp3c14_21530V3.1; PpGAD4. Pp3c17_22200V3.1; PpGAD5. Pp3c23_8800V3.1; PpGABA-T1. Pp3c1_32910V3.1; PpGABA-T2. Pp3c6_25350V3.1, PpGABA-T3. Pp3s30_720V3.1; PpSSADH1. Pp3c1_16240V3.1; PpSSADH2. Pp3c6_25370V3.1; PpSSADH3. Pp3c6_27580V3.1; PpSSADH4. Pp3c26_10958V3.1; PpSSADH5. Pp3c26_10950V3.1.大豆Clycine max:GmGAD1. Glyma.02G241400.1; GmGAD2. Glyma.05G136100.1; GmGAD3. Glyma.08G091300.1; GmGAD4. Glyma.08G091400.1; GmGAD5. Glyma.08G091500.1; GmGAD6. Glyma.09G168900.1; GmGAD7. Glyma.11G213000.1; GmGAD8. Glyma.14G211100.1; GmGAD9. Glyma.18G043600.1; GmGABA-T1. Glyma.03G057900.1; GmGABA-T2. Glyma.11G096200.1; GmGABA-T3. Glyma.12G022300.1; GmSSADH1. Glyma.03G052700.1; GmSSADH2. Glyma.08G163700.1; GmSSADH3. Glyma.14G091500.1; GmSSADH4. Glyma.15G263500.1.二穗短柄草Brachypodium distallyan:BdGAD1. Bradi1g10480.1; BdGAD2. Bradi1g68807.2; BdGAD3. Bradi3g37830.1; BdGAD4. Bradi5g11600.1; BdGAD5. Bradi5g11640.1;BdGABA-T1. Bradi2g31220.1; BdGABA-T2. Bradi3g17762.2; BdGABA-T3. Bradi5g21710.1; BdSSADH1. Bradi3g05490.1.拟南芥Arabidopsis thaliana:AtGAD1. AT1G65960.2; AtGAD2. AT2G02000.1; AtGAD3. AT2G02010.1; AtGAD4. AT3G17720.1; AtGAD5. AT3G17760.1; AtGAD6. AT5G17330.1; AtGABA-T. AT3G22200.2; AtSSADH. AT1G79440.1.葡萄Vitis vinifera:VvGAD1. GSVIVT01000391001; VvGAD2. GSVIVT01011564001; VvGAD3. GSVIVT01011565001; VvGAD4. GSVIVT01035247001; VvGABA-T1. GSVIVT01015824001; VvGABA-T2. GSVIVT01015821001; VvSSADH1. GSVIVT01036719001; VvSSADH2. GSVIVT01036721001; VvSSADH3. GSVIVT01036720001.水稻Oryza sativa:OsGAD1. LOC_Os03g13300.1; OsGAD2. LOC_Os03g51080.1; OsGAD3. LOC_Os04g37460.1; OsGAD4. LOC_Os04g37500.1; OsGAD5. LOC_Os05g34840.1; OsGAD6. LOC_Os08g36320.1; OsGABA-T1. LOC_Os02g02210.1; OsGABA-T2. LOC_Os04g52440.1; OsGABA-T3. LOC_Os04g52450.1; OsGABA-T4. LOC_Os08g10510.1; OsSSADH. LOC_Os02g07760.1.无油樟Amborella trichopoda:AmtGAD1. evm_27.model.AmTr_v1.0_scaffold00024.92, AmtGAD2. evm_27.model.AmTr_v1.0_scaffold00024.94; AmtGAD3. evm_27.model.AmTr_v1.0_scaffold00024.104; AmtGABA-T1. evm_27.model.AmTr_v1.0_scaffold00062.203; AmtSSADH. evm_27.model.AmTr_v1.0_scaffold00004.211.栎树Quercus suber:QsGAD1. QsXM_024015833.1; QsGAD2. QsXM_024017178.1; QsGAD3. QsXM_024036669.1; QsGAD4. QsXM_024058854.1; QsGAD5. QsXM_024058855.1;QsGAD6. QsXM_024071398.1; QsGABA-T. QsXM_024014727.1; QsSSADH1. QsXM_024041909.1; QsSSADH2. QsXM_024015053.1.板栗Custanea mollissima:CmGAD1. BUA.CMHBY200840; CmGAD2. BUA.CMHBY206641; CmGAD3. BUA.CMHBY207328; CmGAD4. BUA.CMHBY210167; CmGAD5. BUA.CMHBY217485; CmGABA-T. BUA.CMHBY206018; CmSSADH. BUA.CMHBY202309.毛果杨Populus trichcarpa:PtGAD1. Potri.T059200.1; PtGAD2. Potri.004G075200.1; PtGAD3. Potri.004G075300.1; PtGAD4. Potri.010G100500.1; PtGAD5. Potri.008G141100.1, PtGAD6. Potri.012G039000.1; PtGABA-T1. Potri.016G018500.1; PtGABA-T2. Potri.006G020900.1; PtSSADH1. Potri.010G174000.1; PtSSADH2. Potri.008G081900.1. 注: .杨树基因the gene of poplar.板栗基因序列号来自NCBI,其余基因序列号均来自phytozom。The chestnut gene sequence number is from NCBI, and the rest of the gene sequence numbers are from phytozome. "
[1] | 施征, 史胜青, 钟传飞 , 等. γ-氨基丁酸在植物抗逆生理及调控中的作用[J]. 生命科学研究, 2007,11(S1):57-61. |
SHI Z, SHI S Q, ZHONG C F , et al. The roles of γ-aminobutyric acid on physiology and regulation under stress in plants[J]. Life Sci Res, 2007,11(S1):57-61. DOI: 10.16605/j.cnki.1007-7847.2007.s1.006. | |
[2] |
BOUCHÉ N, FROMM H . GABA in plants:Just a metabolite?[J]. Trends Plant Sci, 2004,9(3):110-115. DOI: 10.1016/j.tplants.2004.01.006.
doi: 10.1016/j.tplants.2004.01.006 pmid: 15003233 |
[3] |
SHI S Q, SHI Z, JIANG Z P , et al. Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress:regulatory roles for H2O2 and ethylene production[J]. Plant Cell Environ, 2010,33(2):149-162. DOI: 10.1111/j.1365-3040.2009.02065.x.
doi: 10.1111/j.1365-3040.2009.02065.x pmid: 19895397 |
[4] | BOWN A W, SHELP B J . Plant GABA:not just a metabolite[J]. Trends Plant Sci, 2016,21(10):811-813. DOI: 10.1016/j.tplants.2016.08.001. |
[5] |
RAMESH S A, KAMRAN M, SULLIVAN W , et al. Aluminum-activated malate transporters can facilitate GABA transport[J]. Plant Cell, 2018,30(5):1147-1164. DOI: 10.1105/tpc.17.00864.
doi: 10.1105/tpc.17.00864 pmid: 29618628 |
[6] | RAMESH S A, TYERMAN S D, XU B , et al. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters[J]. Nat Commun, 6(1):7879. DOI: 10.1038/ncomms8879. |
[7] | JI J, YUE J Y, XIE T T , et al. Roles of γ-aminobutyric acid on salinity-responsive genes at transcriptomic level in poplar:involving in abscisic acid and ethylene-signalling pathways[J]. Planta, 2018,248(3):675-690. DOI: 10.1007/s00425-018-2915-9. |
[8] | 史胜青, 齐力旺, 肖文发 , 等. 外源GABA对NaCl胁迫下中间锦鸡儿幼苗乙烯生成的调控作用[J]. 林业科学, 2008,44(9):26-30. |
SHI S Q, QI L W, XIAO W F , et al. Role of γ-aminobutyric acid(GABA) on stimulating ethylene biosynjournal in Caragana intermedia seedlings under NaCl stress[J]. Sci Silvae Sin, 2008,44(9):26-30. | |
[9] |
CHE-OTHMAN M H, JACOBY R P, MILLAR A H , et al. Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress[J]. New Phytol, 2020,225(3):1166-1180. DOI: 10.1111/nph.15713.
doi: 10.1111/nph.15713 pmid: 30688365 |
[10] |
BAO H, CHEN X Y, LV S , et al. Virus-induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ-aminobutyric acid metabolic pathway[J]. Plant Cell Environ, 2015,38(3):600-613. DOI: 10.1111/pce.12419.
doi: 10.1111/pce.12419 pmid: 25074245 |
[11] |
RENAULT H, EL AMRANI A, BERGER A , et al. Γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots[J]. Plant Cell Environ, 2013,36(5):1009-1018. DOI: 10.1111/pce.12033.
doi: 10.1111/pce.12033 pmid: 23148892 |
[12] |
PALANIVELU R, BRASS L, EDLUND A F , et al. Pollen tube growth and guidance is regulated by POP2,an Arabidopsis gene that controls GABA levels[J]. Cell, 2003,114(1):47-59. DOI: 10.1016/S0092-8674(03)00479-3
pmid: 12859897 |
[13] |
AKAMA K, TAKAIWA F . C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells[J]. J Exp Bot, 2007,58(10):2699-2707. DOI: 10.1093/jxb/erm120.
doi: 10.1093/jxb/erm120 pmid: 17562689 |
[14] |
BAUM G, LEV-YADUN S, FRIDMANN Y , et al. Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants[J]. EMBO J, 1996,15(12):2988-2996. DOI: 10.1002/j.1460-2075.1996.tb00662.x.
pmid: 8670800 |
[15] |
RENAULT H, EL AMRANI A, PALANIVELU R , et al. GABA accumulation causes cell elongation defects and a decrease in expression of genes encoding secreted and cell wall-related proteins in Arabidopsis thaliana[J]. Plant Cell Physiol, 2011,52(5):894-908. DOI: 10.1093/pcp/pcr041.
doi: 10.1093/pcp/pcr041 pmid: 21471118 |
[16] |
BOUCHÉ N, FAIT A, ZIK M , et al. The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis[J]. Plant Mol Biol, 2004,55(3):315-325. DOI: 10.1007/s11103-004-0650-z.
doi: 10.1007/s11103-004-0650-z pmid: 15604684 |
[17] |
MICHAELI S, FROMM H . Closing the loop on the GABA shunt in plants:Are GABA metabolism and signaling entwined?[J]. Front Plant Sci, 2015,6:419. DOI: 10.3389/fpls.2015.00419.
doi: 10.3389/fpls.2015.00419 pmid: 26106401 |
[18] |
FAIT A, FROMM H, WALTER D , et al. Highway or byway:the metabolic role of the GABA shunt in plants[J]. Trends Plant Sci, 2008,13(1):14-19. DOI: 10.1016/j.tplants.2007.10.005.
doi: 10.1016/j.tplants.2007.10.005 pmid: 18155636 |
[19] |
CLARK S M, DI LEO R , VAN CAUWENBERGHE O R,et al.Subcellular localization and expression of multiple tomato γ-aminobutyrate transaminases that utilize both pyruvate and glyoxylate[J]. J Exp Bot, 2009,60(11):3255-3267. DOI: 10.1093/jxb/erp161.
doi: 10.1093/jxb/erp161 pmid: 19470656 |
[20] | RENAULT H, ROUSSEL V, EL AMRANI A , et al. The Arabidopsis POP2-1mutant reveals the involvement of GABA transaminase in salt stress tolerance[J]. BMC Plant Biol, 2010,10(1):1-16. DOI: 10.1186/1471-2229-10-20. |
[21] |
DELEU C, FAES P, NIOGRET M F , et al. Effects of the inhibitor of the γ-aminobutyrate-transaminase,vinyl-γ-aminobutyrate,on development and nitrogen metabolism in Brassica napus seedlings[J]. Plant Physiol Biochem, 2013,64:60-69. DOI: 10.1016/j.plaphy.2012.12.007.
doi: 10.1016/j.plaphy.2012.12.007 pmid: 23370302 |
[22] |
BOUCHE N, FAIT A, BOUCHEZ D , et al. Mitochondrial succinic-semialdehyde dehydrogenase of the-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants[J]. PNAS, 2003,100(11):6843-6848. DOI: 10.1073/pnas.1037532100.
doi: 10.1073/pnas.1037532100 pmid: 12740438 |
[23] | YUE J Y, DU C J, JI J , et al. Inhibition of α-ketoglutarate dehydrogenase activity affects adventitious root growth in poplar via changes in GABA shunt[J]. Planta, 2018,248(4):963-979. DOI: 10.1007/s00425-018-2929-3. |
[24] |
XIE T T, JI J, CHEN W , et al. GABA negatively regulates adventitious root development in poplar[J]. J Exp Bot, 2020,71(4):1459-1474. DOI: 10.1093/jxb/erz520.
doi: 10.1093/jxb/erz520 pmid: 31740934 |
[25] |
QIU D Y, BAI S L, MA J C , et al. The genome of Populus alba×Populus tremula var.glandulosa clone 84K[J]. DNA Res, 2019,26(5):423-431. DOI: 10.1093/dnares/dsz020
doi: 10.1093/dnares/dsz020 pmid: 31580414 |
[26] |
TIPPMANN H F . Analysis for free:comparing programs for sequence analysis[J]. Brief Bioinform, 2004,5(1):82-87. DOI: 10.1093/bib/5.1.82.
doi: 10.1093/bib/5.1.82 pmid: 15153308 |
[27] |
MÄSER P, THOMINE S, SCHROEDER J I , et al. Phylogenetic relationships within cation transporter families of Arabidopsis[J]. Plant Physiol, 2001,126(4):1646-1667. DOI: 10.1104/pp.126.4.1646.
doi: 10.1104/pp.126.4.1646 pmid: 11500563 |
[28] | SONNHAMMER E L L, EDDY S R, DURBIN R . Pfam:a comprehensive database of protein domain families based on seed alignments[J]. Proteins:Struct Funct Bioinform, 1997,28(3):405-420. DOI: 10.1002/(SICI)1097-0134(199707)28:3405::AID-PROT10>3.0.CO;2-L |
[29] |
GASTEIGER E . ExPASy:the proteomics server for indepth protein knowledge and analysis[J]. Nucleic Acids Res, 2003,31(13):3784-3788. DOI: 10.1093/nar/gkg563.
doi: 10.1093/nar/gkg563 pmid: 12824418 |
[30] | 任丽, 董京祥, 杨洋 , 等. 白桦BpTCP7基因启动子的克隆及表达分析[J]. 南京林业大学学报(自然科学版), 2019,43(1):32-38. |
REN L, DONG J X, YANG Y , et al. Cloning and expression analysis of BpTCP7 promoter from Betula platyphylla[J]. J Nanjing For Univ (Nat Sci Ed), 2019,43(1):32-38. | |
[31] | GOODSTEIN D M, SHU S Q, HOWSON R , et al. Phytozome:a comparative platform for green plant genomics[J]. Nucleic Acids Res, 2012,40(D1):D1178-D1186. DOI: 10.1093/nar/gkr944. |
[32] | KUMAR S, NEI M, DUDLEY J , et al. MEGA:a biologist-centric software for evolutionary analysis of DNA and protein sequences[J]. Briefings Bioinform, 2008,9(4):299-306. DOI: 10.1093/bib/bbn017. |
[33] |
YU S M, KO S S, HONG C Y , et al. Global functional analyses of rice promoters by genomics approaches[J]. Plant Mol Biol, 2007,65(4):417-425. DOI: 10.1007/s11103-007-9232-1.
doi: 10.1007/s11103-007-9232-1 pmid: 17922261 |
[34] |
SONNHAMMER E L L, KOONIN E V . Orthology,paralogy and proposed classification for paralog subtypes[J]. Trends Genet, 2002,18(12):619-620. DOI: 10.1016/S0168-9525(02)02793-2.
pmid: 12446146 |
[35] |
JI J, ZHENG L Y, YUE J Y , et al. Identification of two CiGADs from Caragana intermedia and their transcriptional responses to abiotic stresses and exogenous abscisic acid[J]. PeerJ, 2017,5:e3439. DOI: 10.7717/peerj.3439. https://www.ncbi.nlm.nih.gov/pubmed/28626614/
doi: 10.7717/peerj.3439 pmid: 28626614 |
[36] |
SCHMID M, DAVISON T S, HENZ S R , et al. A gene expression map of Arabidopsis thaliana development[J]. Nat Genet, 2005,37(5):501. DOI: 10.1038/ng1543.
pmid: 15806101 |
[37] |
LEE J H, KIM Y J, JEONG D Y , et al. Isolation and characterization of a Glutamate decarboxylase (GAD) gene and their differential expression in response to abiotic stresses from Panax ginseng C.A.Meyer[J]. Mol Biol Rep, 2010,37(7):3455-3463. DOI: 10.1007/s11033-009-9937-0.
doi: 10.1007/s11033-009-9937-0 pmid: 19967454 |
[38] | 单雪萌, 杨克彬, 史晶晶 , 等. 毛竹GeBP转录因子家族的全基因组鉴定和表达分析[J]. 南京林业大学学报(自然科学版), 2020,44(3):41-48. |
SHAN X M, YANG K B, SHI J J , et al. Genome-wide identification and expression analysis of GeBP transcription factor gene family in moso bamboo[J]. J Nanjing For Univ (Nat Sci Ed), 2020,44(3):41-48. |
[1] | 颜铮明, 阮宏华, 廖家辉, 石珂, 倪娟平, 曹国华, 沈彩芹, 丁学农, 赵小龙, 庄鑫. 不同林龄杨树人工林地表甲虫群落多样性特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 236-242. |
[2] | 刘亚梅, 刘盛全, 周亮, 胡建军, 赵自成, 郑向丽. 8个杨树无性系/品种木材解剖特征及其径向变异模式[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 234-240. |
[3] | 张庆源, 田野, 王淼, 翟政, 周诗朝. 美洲黑杨与青杨杂交F1代苗期表型性状的分化及其类型划分[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 40-48. |
[4] | 崔皓, 韩建刚, 郭俨辉, 季淮, 朱咏莉, 李萍萍. 洪泽湖河湖交汇区典型杨树人工林碳通量月尺度变化特征[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 19-26. |
[5] | 王占军, 吴子琦, 王朝霞, 欧祖兰, 李杰, 蔡倩文, 徐忠东, 张照亮. 3个茶树品种WOX基因家族的进化及密码子偏好性比较[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 71-80. |
[6] | 王润松, 徐涵湄, 曹国华, 沈彩芹, 阮宏华. 施用沼液对杨树人工林细根形态特征的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 119-124. |
[7] | 王立超, 陈凤毛, 仇才楼, 唐进根, 丁学农, 任吉星. 坡面方胸材小蠹鉴定与风险分析[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 201-208. |
[8] | 王润松, 孙源, 徐涵湄, 曹国华, 沈彩芹, 阮宏华. 施用沼液对杨树人工林细根生物量的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 123-129. |
[9] | 马永春, 佘诚棋, 方升佐. 不同修枝方法对杨树人工林生长、光合叶面积和主干饱满度的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 137-142. |
[10] | 惠昊, 关庆伟, 王亚茹, 林鑫宇, 陈斌, 王刚, 胡月, 胡敬东. 不同森林经营模式对土壤氮含量及酶活性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 151-158. |
[11] | 花伟成, 田佳榕, 孙心雨, 徐雁南. 基于TLS数据的杨树削度方程建立及材积估算[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 41-48. |
[12] | 朱沛煌, 陈妤, 季孔庶. 松科植物萜类合成酶及其基因家族研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 233-244. |
[13] | 王瑞, 王国兵, 徐瑾, 徐晓. 凋落物与蚯蚓对杨树人工林土壤团聚体分布及其碳氮含量的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 25-29. |
[14] | 石文广, 李靖, 张玉红, 雷静品, 罗志斌. 7种杨树铅抗性和积累能力的比较研究[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 61-70. |
[15] | 王国兵, 徐瑾, 徐晓, 阮宏华, 曹国华. 蚯蚓与凋落物对杨树人工林土壤酶活性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 8-14. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||