南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (2): 1-9.doi: 10.3969/j.issn.1000-2006.202001013
收稿日期:
2020-01-05
修回日期:
2020-02-03
出版日期:
2020-03-30
发布日期:
2020-04-01
基金资助:
Received:
2020-01-05
Revised:
2020-02-03
Online:
2020-03-30
Published:
2020-04-01
摘要:
植物与土壤之间相互反馈的格局、过程与机制,不但是决定生态系统结构、功能及过程的关键科学问题,而且是陆地生态系统响应全球变化的重要组成部分。基于目前国内外研究现状,从养分循环角度剖析“植物-土壤”间的反馈效应,探明相互反馈在空间尺度(根面、根际、种类、生态系统以及区域等)与时间尺度(秒至千年)上的级联效应及其变化格局;阐明根际、植物种类、生态系统及区域地理等水平上“植物-土壤”的相互反馈机制,重点揭示根系分泌、共生、生长及代谢的根际界面过程对植物水分/养分吸收与土壤物理学修饰的调控机制,剖析“植物种类-凋落物化学-土壤生物-土壤有机质”相互作用对地上-地下养分循环过程的驱动机制,运用“上行-下行控制理论及腐屑食物网模型”揭示地上-地下生物群落交互作用的过程与机制,以及土壤地质演变(岩石风化模式、土壤形成模式及土壤养分格局的变化)与区域植被演替(优势种更替及植被分布模式、地上-地下凋落物输入格局等的变化)相互反馈的过程与机制;从“植物-土壤”相互反馈的理论视角,分析生态退化与恢复、外来物种生态入侵、大气氮沉降、二氧化碳浓度升高以及植物多样性减少等全球生态问题的特征、形成机制以及可能的应对策略,揭示生态系统“地上-地下”相互反馈的生态学过程,以及陆地生态系统对全球生态环境变化的响应特征与机理。
中图分类号:
王邵军. “植物-土壤”相互反馈的关键生态学问题:格局、过程与机制[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 1-9.
WANG Shaojun. Key ecological issues in plant-soil feedback: pattern, process and mechanism[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(2): 1-9.DOI: 10.3969/j.issn.1000-2006.202001013.
[1] | DEDEYN G, VANDERPUTTEN W. Linking aboveground and belowground diversity[J]. Ecology and Evolution, 2005, 20(11):625-633.DOI: 10.1016/j.tree.2005.08.009. |
[2] |
FALKOWSKI P. The global carbon cycle:a test of our knowledge of earth as a system[J]. Science, 2000, 290(5490):291-296.DOI: 10.1126/science.290.5490.291.
doi: 10.1126/science.290.5490.291 |
[3] | WOLTERS V, SILVER W L, BIGNELL D E, et al. Effects of global changes on above- and belowground biodiversity in terrestrial ecosystems:implications for ecosystem functioning[J]. Bio Science, 2000, 50(12):1089-1098.DOI: 10.1641/0006-3568(2000)050[1089:EOGCOA]2.0.CO;2. |
[4] | 王邵军. 武夷山土壤动物群落生态特征及功能研究[M]. 上海: 上海交通大学出版社, 2015. |
WANG S J. Study on ecological characteristics and function of soil faunal community in the Wuyi Mountains[M]. Shanghai: Shanghai Jiao Tong University Press, 2015. | |
[5] |
VAN DEN BERG H. Multiple nutrient limitation in unicellulars: reconstructing Liebig’s law[J]. Mathematical Biosciences, 1998, 149(1):1-22. DOI: 10.1016/S0025-5564(97)10019-0.
doi: 10.1016/S0025-5564(97)10019-0 |
[6] |
WARDLE D A. Ecological linkages between aboveground and belowground biota[J]. Science, 2004, 304(5677):1629-1633.DOI: 10.1126/science.1094875.
doi: 10.1126/science.1094875 |
[7] | JENNY H. Factors of soil formation: a system of quantitative pedology[M]. New York: McGraw-Hill, 1941. |
[8] |
SAIFULLAH, DAHLAWI S, NAEEM A, et al. Biochar application for the remediation of salt-affected soils:challenges and opportunities[J]. Science of the Total Environment, 2018, 625(1):320-335.DOI: 10.1016/j.scitotenv.2017.12.257.
doi: 10.1016/j.scitotenv.2017.12.257 |
[9] |
CRAWFORD K M, BAUER J T, COMITA L S, et al. When and where plant-soil feedback may promote plant coexistence:a meta-analysis[J]. Ecology Lettter, 2019, 22(8):1274-1284.DOI: 10.1111/ele.13278.
doi: 10.1111/ele.2019.22.issue-8 |
[10] |
SCHITTKO C, RUNGE C, STRUPP M, et al. No evidence that plant-soil feedback effects of native and invasive plant species under glasshouse conditions are reflected in the field[J]. Journal of Ecology, 2016, 104(5):1243-1249.DOI: 10.1111/1365-2745.12603.
doi: 10.1111/1365-2745.12603 |
[11] |
OLDFIELD E E, WOOD S A, BRADFORD M A. Direct effects of soil organic matter on productivity mirror those observed with organic amendments[J]. Plant Soil, 2018, 423(1/2):363-373.DOI: 10.1007/s11104-017-3513-5.
doi: 10.1007/s11104-017-3513-5 |
[12] |
MAHMOOD R, HUBBARD K G. Relationship between soil moisture of near surface and multiple depths of the root zone under heterogeneous land uses and varying hydroclimatic conditions[J]. Hydrological Processes, 2007, 21(25):3449-3462.DOI: 10.1002/hyp.6578.
doi: 10.1002/(ISSN)1099-1085 |
[13] | 王邵军, 李霁航, 陆梅, 等. “AM真菌-根系-土壤”耦合作用机制研究进展[J]. 中南林业科技大学学报, 2019,39(12):1-9. |
WANG S J, LI J H, LU M, et al. Advance on the mechanism of coupling interactions among AM fungi,roots and soils[J]. Journal of Central South University of Forestry & Technology, 2019,39(12):1-9.DOI: 10.14067/j.cnki.1673-923x.2019.12.001. | |
[14] |
EHRENFELD J G, RAVIT B, ELGERSMA K. Feedback in the plant-soil system[J]. Annual Review of Environment and Resources, 2005, 30(1):75-115.DOI: 10.1146/annurev.energy.30.050504.144212.
doi: 10.1146/annurev.energy.30.050504.144212 |
[15] |
MOINET G Y K, MIDWOOD A J, HUNT J E, et al. Estimates of rhizosphere priming effects are affected by soil disturbance[J]. Geoderma, 2018, 313:1-6.DOI: 10.1016/j.geoderma.2017.10.027.
doi: 10.1016/j.geoderma.2017.10.027 |
[16] |
HARDIE K. The effect of removal of extraradical hyphae on water uptake by vesicular-arbuscular mycorrhizal plants[J]. New Phytologist, 1985, 101(4):677-684.DOI: 10.1111/j.1469-8137.1985.tb02873.x.
doi: 10.1111/nph.1985.101.issue-4 |
[17] |
LI Y M, WANG S J, LU M, et al. Rhizosphere interactions between earthworms and arbuscular mycorrhizal fungi increase nutrient availability and plant growth in the desertification soils[J]. Soil and Tillage Research, 2019, 186:146-151.DOI: 10.1016/j.still.2018.10.016.
doi: 10.1016/j.still.2018.10.016 |
[18] | 刘润进, 李晓林. 丛枝菌根及其应用[M]. 北京: 科学出版社, 2000:1-7. |
LIU R J, LI X L. Arbuscular mycorrhiza and its application[M]. Beijing: Science Press, 2000:1-7. | |
[19] | 向丹, 徐天乐, 李欢, 等. 丛枝菌根真菌的生态分布及其影响因子研究进展[J]. 生态学报, 2017,37(11):3597-3606. |
XIANG D, XU T L, LI H, et al. Ecological distribution of arbuscular mycorrhizal fungi and the influencing factors[J]. Acta Ecologica Sinic, 2017,37(11):3597-3606.DOI: 10.5846/stxb201603280563. | |
[20] |
PAUSCH J, KUZYAKOV Y. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale[J]. Global Change Biology, 2018, 24(1):1-12.DOI: 10.1111/gcb.13850.
doi: 10.1111/gcb.2018.24.issue-1 |
[21] |
XIAO L, LIU G B, LI P, et al. Direct and indirect effects of elevated CO2 and nitrogen addition on soil microbial communities in the rhizosphere ofBothriochloa ischaemum[J]. Journal of Soils and Sediments, 2019, 19(11):3679-3687.DOI: 10.1007/s11368-019-02336-0.
doi: 10.1007/s11368-019-02336-0 |
[22] |
VAN WYK D A B, ADELEKE R, RHODE O H J, et al. Ecological guild and enzyme activities of rhizosphere soil microbial communities associated with Bt-maize cultivation under field conditions in North West Province of South Africa[J]. Journal of Basic Microbiology, 2017, 57(9):781-792.DOI: 10.1002/jobm.201700043.
doi: 10.1002/jobm.v57.9 |
[23] |
EGLI M, MIRABELLA A, SARTORI G. The role of climate and vegetation in weathering and clay mineral formation in late Quaternary soils of the Swiss and Italian Alps[J]. Geomorphology, 2008, 102(3/4):307-324.DOI: 10.1016/j.geomorph.2008.04.001.
doi: 10.1016/j.geomorph.2008.04.001 |
[24] | 宋金凤, 汝佳鑫, 张红光, 等. 地衣和地衣酸与岩石矿物风化及其机制研究进展[J]. 南京林业大学学报(自然科学版), 2019,43(4):169-177. |
SONG J F, RU J X, ZHANG H G, et al. Research progress on lichens,lichenic acids,rock and mineral weathering and its mechanisms[J]. J Nanjing For Univ (Nat Sci Ed), 2019,43(4):169-177.DOI: 10.3969/j.issn.1000-2006.201806030. | |
[25] | BHAT K K S, NYE P H. Diffusion of phosphate to plant roots in soil-I. Quantitative autoradiography of the depletion zone[J]. Plant & Soil, 1973, 38(1):161-175. |
[26] |
AMBRIZ E, BÁEZ-PÉREZ A, SÁNCHEZ-YÁÑEZ J M, et al. Fraxinus-Glomus-Pisolithus symbiosis:plant growth and soil aggregation effects[J]. Pedobiologia, 2010, 53(6):369-373.DOI: 10.1016/j.pedobi.2010.07.001.
doi: 10.1016/j.pedobi.2010.07.001 |
[27] | 周文杰, 吕德国, 秦嗣军. 植物与根际微生物相互作用关系研究进展[J]. 吉林农业大学学报, 2016,38(3):253-260. |
ZHOU W J, LU D G, QIN S J. Research progress in interaction between plant and rhizosphere microorganisms[J]. Journal of Jilin Agricultural University, 2016,38(3):253-260.DOI: 10.13327/j.jjlau.2016.3073. | |
[28] |
ALIKU O, OSHUNSANYA S O. Assessment of the SOILWAT model for predicting soil hydro-physical characteristics in three agro-ecological zones in Nigeria[J]. International Soil and Water Conservation Research, 2018, 6(2):131-142.DOI: 10.1016/j.iswcr.2018.01.003.
doi: 10.1016/j.iswcr.2018.01.003 |
[29] |
JACOBS L M, SULMAN B N, BRZOSTEK E R, et al. Interactions among decaying leaf litter,root litter and soil organic matter vary with mycorrhizal type[J]. Journal of Ecology, 2018, 106(2):502-513.DOI: 10.1111/1365-2745.12921.
doi: 10.1111/jec.2018.106.issue-2 |
[30] |
WANG S J, RUAN H H, WANG B. Effects of soil microarthropods on plant litter decomposition across an elevation gradient in the Wuyi Mountains[J]. Soil Biology & Biochemistry, 2009, 41(5):891-897.DOI: 10.1016/j.soilbio.2008.12.016.
doi: 10.1016/j.soilbio.2008.12.016 |
[31] | 杨玉盛, 郭剑芬, 陈银秀, 等. 福建柏和杉木人工林凋落物分解及养分动态的比较[J]. 林业科学, 2004,40(3):19-25. |
YANG Y S, GUO J F, CHEN Y X, et al. Comparatively study on litter decomposition and nutrient dynamics between plantations of Fokienia hodginsii and Cunninghamia lanceolata [J]. Scientia Silvae Sinicae, 2004,40(3):19-25.DOI: 10.3321/j.issn:1001-7488.2004.03.003. | |
[32] |
COTRUFO M F, WALLENSTEIN M D, BOOT C M, et al. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization:do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013, 19(4):988-995.DOI: 10.1111/gcb.12113.
doi: 10.1111/gcb.12113 |
[33] |
VAN DE VOORDE T F J, VAN DER PUTTEN W H, BEZEMER T M. The importance of plant-soil interactions,soil nutrients,and plant life history traits for the temporal dynamics of Jacobaea vulgaris in a chronosequence of old-fields[J]. Oikos, 2012, 121(8):1251-1262.DOI: 10.1111/j.1600-0706.2011.19964.x.
doi: 10.1111/more.2012.121.issue-8 |
[34] |
ŠMILAUEROVÁ M. Plant root response to heterogeneity of soil resources: effects of nutrient patches,AM symbiosis,and species composition[J]. Folia Geobotanica, 2001, 36(4):337-351.DOI: 10.1007/bf02899985.
doi: 10.1007/BF02899985 |
[35] |
王邵军, 阮宏华. 土壤生物对地上生物的反馈作用及其机制[J]. 生物多样性, 2008,16(4):407-416.
doi: 10.3724/SP.J.1003.2008.07356 |
WANG S J, RUAN H H. Feedback mechanisms of soil biota to aboveground biology in terrestrial ecosystems[J]. Biodiversity Science, 2008,16(4):407-416.DOI: 10.3321/j.issn:1005-0094.2008.04.012. | |
[36] | WARDLE D. Communities and ecosystems: linking the aboveground and belowground components[M]. Princeton: Princeton University Press, 2002. |
[37] |
VAN DER HEIJDEN M G A, KLIRONOMOS J N, URSIC M, et al. Mycorrhizal fungal diversity determines plant biodiversity,ecosystem variability and productivity[J]. Nature, 1998, 396(6706):69-72.DOI: 10.1038/23932.
doi: 10.1038/23932 |
[38] |
HEEMSBERGEN D A. Biodiversity effects on soil processes explained by interspecific functional dissimilarity[J]. Science, 2004, 306(5698):1019-1020.DOI: 10.1126/science.1101865.
doi: 10.1126/science.1101865 |
[39] | 马洁怡, 王金平, 张金池, 等. 沿海造林树种根际丛枝菌根真菌与土壤因子的通径分析[J]. 南京林业大学学报(自然科学版), 2019,43(4):139-147. |
MA J Y, WANG J P, ZHANG J C, et al. Path analysis of arbuscular mycorrhizal fungi and soil factors in coastal afforestation tree species[J]. J Nanjing For Univ(Nat Sci Ed), 2019,43(4):139-147.DOI: 10.3969/j.issn.1000-2006.201901012. | |
[40] |
WANG S J, RUAN H H, HAN Y. Effects of microclimate,litter type,and mesh size on leaf litter decomposition along an elevation gradient in the Wuyi Mountains, China[J]. Ecological Research, 2010, 25(6):1113-1120.DOI: 10.1007/s11284-010-0736-9.
doi: 10.1007/s11284-010-0736-9 |
[41] |
FARRAR J, HAWES M, JONES D, et al. How roots control the flux of carbon to the rhizosphere[J]. Ecology, 2003, 84(4):827-837.DOI: 10.1890/0012-9658(2003)084[0827:hrctfo]2.0.co;2.
doi: 10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2 |
[42] |
SALMON S. The impact of earthworms on the abundance of Collembola:improvement of food resources or of habitat?[J]. Biology and Fertility of Soils, 2004, 40(5):323-333.DOI: 10.1007/s00374-004-0782-y.
doi: 10.1007/s00374-004-0782-y |
[43] | 郝玉琢, 周磊, 吴慧, 等. 4种类型水曲柳人工林叶片-凋落物-土壤生态化学计量特征比较[J]. 南京林业大学学报(自然科学版), 2019,43(4):101-108. |
HAO Y Z, ZHOU L, WU H, et al. Comparison of ecological stoichiometric characteristics of leaf-litter-soil in four types of Fraxinus mandshurica plantations [J]. J Nanjing For Univ(Nat Sci Ed), 2019,43(4):101-108.DOI: 10.3969/j.issn.1000-2006.201806021. | |
[44] |
VINCENOT C E, CARTENÌ F, BONANOMI G, et al. Plant-soil negative feedback explains vegetation dynamics and patterns at multiple scales[J]. Oikos, 2017, 126(9):1319-1328.DOI: 10.1111/oik.04149.
doi: 10.1111/oik.2017.v126.i9 |
[1] | 李思荣, 苏同向. 基于保护政策影响的抚仙湖流域景观格局变化及生态系统服务价值响应[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 145-154. |
[2] | 戚丽萍, 栾兆擎, 魏勉, 闫丹丹, 李静泰, 么秀颖, 刘垚, 谢思荧, 盛昱凤. 基于土地利用的江苏省各市生态系统服务价值时空变化研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 200-208. |
[3] | 董瀚元, 于颖, 范文义. 星载激光雷达GEDI数据林下地形反演性能验证[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 141-149. |
[4] | 李威, 李吉平, 张银龙, 李萍萍, 韩建刚. 双碳目标背景下湖泊湿地的生态修复技术[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 157-166. |
[5] | 雷海清, 孙高球, 郑得利. 温州市森林生态系统碳储量研究[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 20-26. |
[6] | 贾艳艳, 唐晓岚, 任宇杰. 长江流域安徽段生态系统服务价值与景观生态风险时空演变及其关联分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 31-40. |
[7] | 王有良, 林开敏, 宋重升, 崔朝伟, 彭丽鸿, 郑宏, 郑鸣鸣, 任正标, 邱明镜. 间伐对杉木人工林生态系统碳储量的短期影响[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 65-73. |
[8] | 谢君毅, 徐侠, 蔡斌, 张惠光. “碳中和”背景下碳输入方式对森林土壤活性氮库及氮循环的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 1-11. |
[9] | 黄梓敬, 徐侠, 张惠光, 蔡斌, 李良彬. 根系输入对森林土壤碳库及碳循环的影响研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 25-32. |
[10] | 郭亮, 丁九敏, 徐侠. 树干甲烷的研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 235-241. |
[11] | 孙龙, 窦旭, 胡同欣. 林火对森林生态系统碳氮磷生态化学计量特征影响研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 1-9. |
[12] | 罗艳, 何朋俊, 吕倩, 范川, 冯茂松, 李贤伟, 陈露蔓. 目标树经营初期对马尾松人工林碳贮量的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 206-214. |
[13] | 韩会庆,张娇艳,马庚,张新鼎,白玉梅. 气候变化对生态系统服务影响的研究进展[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 184-190. |
[14] | 陈瑶,蔡广鹏,韩会庆,罗绪强,王后阵. 居民对城市湿地公园生态系统服务功能认知的分析[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 147-152. |
[15] | 吕国屏,廖承锐,徐雁南,张婷,李海东. 基于CAMarkov模型的喀斯特地区县域生态系统服务价值动态模拟[J]. 南京林业大学学报(自然科学版), 2017, 41(05): 49-56. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||