南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (6): 9-11.doi: 10.3969/j.issn.1000-2006.202008047
所属专题: 野生动物保护与疫病防控专题
收稿日期:
2020-08-28
修回日期:
2020-10-19
出版日期:
2020-11-30
发布日期:
2020-12-07
通讯作者:
黄峥
基金资助:
WANG Yingying1(), MA Yuying2, ZHANG Yong3, HUANG Zheng2,*()
Received:
2020-08-28
Revised:
2020-10-19
Online:
2020-11-30
Published:
2020-12-07
Contact:
HUANG Zheng
摘要:
近半个世纪以来,新发传染病(多为涉及多宿主的人兽共患病)正在以前所未有的速度不断增加,不仅严重威胁人类健康,还影响着农业生产和野生动物保护。因不同宿主对病原的传播能力具有种间差异,宿主群落结构能够显著地影响病原的传播动态和传染病风险。多样性,作为表征群落结构的重要指标之一,其和传染病风险间的关系(即多样性-疾病关系)是传染病生态学研究的核心问题之一。尤其是“稀释效应”(即提高宿主多样性能够降低疾病风险)的提出引发了广泛的关注。虽然稀释效应得到了众多实证研究的支持,但其普适性仍然存在争议。笔者围绕多样性-疾病关系,介绍稀释效应的生态学机制、普适性及其产生的前提条件。并就3个方向总结了稀释效应的研究进展:①稀释效应的尺度依赖性;②宿主局部灭绝风险和其病原传播能力间的关系;③多样性对疾病风险的身份效应。此外,还分析了近期关于多样性-疾病关系研究框架的拓展,即从物种多样性拓展到谱系多样性;从单一疾病风险拓展到疾病总负担。最后,就未来可能的研究方向提出展望,认为未来研究需探讨分析生境破碎化、非宿主以及群落功能多样性在多样性-疾病关系中的作用。
中图分类号:
王莹莹,马钰莹,张永,等. 生物多样性与传染病风险[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 9-11.
WANG Yingying, MA Yuying, ZHANG Yong, HUANG Zheng. Biodiversity and the risk of infectious diseases[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(6): 9-11.DOI: 10.3969/j.issn.1000-2006.202008047.
表1
稀释效应产生的几种机制"
机制 mechanism | 定义 definition |
---|---|
易感宿主控制 susceptible host regulation | 加入弱宿主能够通过竞争或捕食等种间关系降低易感(强)宿主的丰度 |
接触减少 encounter reduction | 弱宿主的存在能够降低易感(强)宿主和已感染宿主(或已感染媒介)间的接触率 |
传染率减少 transmission reduction | 弱宿主的存在能够降低病原从已感染宿主(或已感染媒介)向易感(强)宿主传播的概率 |
媒介控制 vector regulation | 弱宿主的存在能够降低媒介的丰度 |
恢复率增加 recovery augmentation | 弱宿主的存在能够使已感染个体的回复率增加(如通过为感染个体提供更多食物资源等) |
[1] |
GIBB R, REDDING D W, CHIN K Q, et al. Zoonotic host diversity increases in human-dominated ecosystems[J]. Nature, 2020,584(7821):398-402. DOI: 10.1038/s41586-020-2562-8.
pmid: 32759999 |
[2] | JONES K E, PATEL N G, LEVY M A, et al. Global trends in emerging infectious diseases[J]. Nature, 2008,451(7181):990-993. DOI: 10.1038/nature06536. |
[3] | MORENS D M, FOLKERS G K, FAUCI A S. The challenge of emerging and re-emerging infectious diseases[J]. Nature, 2004,430(6996):242-249. DOI: 10.1038/nature02759. |
[4] |
DASZAK P. Emerging infectious diseases of wildlife:threats to biodiversity and human health[J]. Science, 2000,287(5452):443-449. DOI: 10.1126/science.287.5452.443.
pmid: 10642539 |
[5] | ALLEN T, MURRAY K A, ZAMBRANA-TORRELIO C, et al. Global hotspots and correlates of emerging zoonotic diseases[J]. Nat Commun, 2017,8:1124. DOI: 10.1038/s41467-017-00923-8. |
[6] | TIAN H Y, LIU Y H, LI Y D, et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China[J]. Science, 2020,368(6491):638-642. DOI: 10.1126/science.abb6105. |
[7] |
OLSEN B, MUNSTER V J, WALLENSTEN A, et al. Global patterns of influenza: a virus in wild birds[J]. Science, 2006,312(5772):384-388. DOI: 10.1126/science.1122438.
pmid: 16627734 |
[8] |
VERHAGEN J H, VAN DER JEUGD H P, NOLET B A, et al.Wild bird surveillance around outbreaks of highly pathogenic avian influenza A(H5N8) virus in the Netherlands,2014,within the context of global flyways[J]. Euro Surveill, 2015,20(12) DOI: 10.2807/1560-7917.es2015.20.12.21069.
doi: 10.2807/1560-7917.es2015.20.12.21075 pmid: 25846487 |
[9] | CABLE J, BARBER I, BOAG B, et al. Global change,parasite transmission and disease control:lessons from ecology[J]. Phil Trans R Soc B, 2017,372(1719):20160088. DOI: 10.1098/rstb.2016.0088. |
[10] | 杨坤, 周晓农. 景观流行病学研究现状及其进展[J]. 中华流行病学杂志, 2008,29(2):198-201. |
YANG K, ZHOU X N. The study on status and development of landscape epidemiology[J]. Chin J Epidemiol, 2008,29(2):198-201. DOI: 10.3321/j.issn:0254-6450.2008.02.022. | |
[11] |
FRAINER A, MCKIE B G, AMUNDSEN P A, et al. Parasitism and the biodiversity-functioning relationship[J]. Trends Ecol Evol, 2018,33(4):260-268. DOI: 10.1016/j.tree.2018.01.011.
doi: 10.1016/j.tree.2018.01.011 pmid: 29456188 |
[12] |
JOHNSON P T, DE ROODE J C, FENTON A.Why infectious disease research needs community ecology[J]. Science, 2015,349(6252):1259504. DOI: 10.1126/science.1259504.
pmid: 26339035 |
GIBB R, REDDING D W, CHIN K Q, et al. Zoonotic host diversity increases in human-dominated ecosystems[J]. Nature, 2020,584(7821):398-402. DOI: 10.1038/s41586-020-2562-8. | |
[13] | ESTRADA-PEÑA A, OSTFELD R S, PETERSON A T, et al. Effects of environmental change on zoonotic disease risk:an ecological primer[J]. Trends Parasitol, 2014,30(4):205-214. DOI: 10.1016/j.pt.2014.02.003. |
[14] | 田怀玉, 童世庐. 生态传染病模型研究:人兽共患病传播与环境影响因素[J]. 中华预防医学杂志, 2017,51(1):8-11. |
TIAN H Y, TONG S L. Recent advance in eco-epidemiological model:zoonotic disease transmission and environmental factors[J]. 2017,51(1):8-11. DOI: 10.3760/cma.j.issn.0253-9624.2017.01.003. | |
[15] |
OSTFELD R S, GLASS G E, KEESING F. Spatial epidemiology:an emerging (or re-emerging) discipline[J]. Trends Ecol Evol, 2005,20(6):328-336. DOI: 10.1016/j.tree.2005.03.009.
doi: 10.1016/j.tree.2005.03.009 pmid: 16701389 |
[16] | 王然, 乔慧捷. 生态位模型在流行病学中的应用[J]. 生物多样性, 2020,28(5):579-586. |
WANG R, QIAO H J. Matters needing attention about invoking ecological niche model in epidemiology[J]. Biodivers Sci, 2020,28(5):579-586. DOI: 10.17520/biods.2020155. | |
[17] |
JENKINS E J, SIMON A, BACHAND N, et al. Wildlife parasites in a “One Health World”[J]. Trends Parasitol, 2015,31(5):174-180. DOI: 10.1016/j.pt.2015.01.002.
doi: 10.1016/j.pt.2015.01.002 |
[18] |
KRUSE H, KIRKEMO A M, HANDELAND K. Wildlife as source of zoonotic infections[J]. Emerg Infect Dis, 2004,10(12):2067-2072. DOI: 10.3201/eid1012.040707.
doi: 10.3201/eid1012.040707 pmid: 15663840 |
[19] | 李彬彬. 推进生物多样性保护与人类健康的共同发展:One Health[J]. 生物多样性, 2020,28(5):596-605. |
LI B B. Creating synergy between biodiversity conservation and human health-One Health[J]. Biodivers Sci, 2020,28(5):596-605. DOI: 10.17520/biods.2020133. | |
[20] |
JOHNSON P T J, OSTFELD R S, KEESING F. Frontiers in research on biodiversity and disease[J]. Ecol Lett, 2015,18(10):1119-1133. DOI: 10.1111/ele.12479.
doi: 10.1111/ele.12479 pmid: 26261049 |
[21] |
DOWNS C J, SCHOENLE L A, HAN B A, et al. Scaling of host competence[J]. Trends Parasitol, 2019,35(3):182-192. DOI: 10.1016/j.pt.2018.12.002.
doi: 10.1016/j.pt.2018.12.002 pmid: 30709569 |
[22] |
KIRK D, SHEA D, START D. Host traits and competitive ability jointly structure disease dynamics and community assembly[J]. J Anim Ecol, 2019,88(9):1379-1391. DOI: 10.1111/1365-2656.13028.
doi: 10.1111/1365-2656.13028 pmid: 31120552 |
[23] |
SERVICE M W. Agricultural development and arthropod-borne diseases: a review[J]. Rev Saude Publica, 1991,25(3):165-178. DOI: 10.1590/s0034-89101991000300002.
doi: 10.1590/s0034-89101991000300002 pmid: 1687929 |
[24] | OSTFELD R S, KEESING F. Effects of host diversity on infectious disease[J]. Annu Rev Ecol Evol Syst, 2012,43(1):157-182. DOI: 10.1146/annurev-ecolsys-102710-145022. |
[25] |
HUANG Z Y X, VAN LANGEVELDE F, ESTRADA-PEÑA A, et al. The diversity-disease relationship:evidence for and criticisms of the dilution effect[J]. Parasitology, 2016,143(9):1075-1086. DOI: 10.1017/s0031182016000536.
doi: 10.1017/S0031182016000536 pmid: 27041655 |
[26] |
KEESING F, HOLT R D, OSTFELD R S. Effects of species diversity on disease risk[J]. Ecol Lett, 2006,9(4):485-498. DOI: 10.1111/j.1461-0248.2006.00885.x.
doi: 10.1111/j.1461-0248.2006.00885.x pmid: 16623733 |
[27] |
HALLIDAY F W, ROHR J R, LAINE A L.Biodiversity loss underlies the dilution effect of biodiversity[J].Ecol Lett, 2020: Online. DOI: 10.1111/ele.13590.
doi: 10.1111/ele.13628 pmid: 33103837 |
[28] |
ROHR J R, CIVITELLO D J, HALLIDAY F W, et al. Towards common ground in the biodiversity-disease debate[J]. Nat Ecol Evol, 2020,4(1):24-33. DOI: 10.1038/s41559-019-1060-6.
doi: 10.1038/s41559-019-1060-6 pmid: 31819238 |
[29] |
HALLIDAY F W, ROHR J R. Measuring the shape of the biodiversity-disease relationship across systems reveals new findings and key gaps[J]. Nat Commun, 2019,10:5032. DOI: 10.1038/s41467-019-13049-w.
doi: 10.1038/s41467-019-13049-w pmid: 31695043 |
[30] | OSTFELD R S, KEESING F. Biodiversity series: the function of biodiversity in the ecology of vector-borne zoonotic diseases[J]. Can J Zool, 2000,78(12):2061-2078. DOI: 10.1139/z00-172. |
[31] |
LOGIUDICE K, OSTFELD R S, SCHMIDT K A, et al. The ecology of infectious disease:effects of host diversity and community composition on Lyme disease risk[J]. Proc Natl Acad Sci USA, 2003,100(2):567-571. DOI: 10.1073/pnas.0233733100.
doi: 10.1073/pnas.0233733100 pmid: 12525705 |
[32] | ALLAN B F, KEESING F, OSTFELD R S. Effect of forest fragmentation on Lyme disease risk[J]. Conserv Biol, 2003,17(1):267-272. DOI: 10.1046/j.1523-1739.2003.01260.x. |
[33] |
KEESING F, BELDEN L K, DASZAK P, et al. Impacts of biodiversity on the emergence and transmission of infectious diseases[J]. Nature, 2010,468(7324):647-652. DOI: 10.1038/nature09575.
doi: 10.1038/nature09575 pmid: 21124449 |
[34] |
ALLAN B F, LANGERHANS R B, RYBERG W A, et al. Ecological correlates of risk and incidence of West Nile virus in the United States[J]. Oecologia, 2009,158(4):699-708. DOI: 10.1007/s00442-008-1169-9.
doi: 10.1007/s00442-008-1169-9 pmid: 18941794 |
[35] |
SWADDLE J P, CALOS S E. Increased avian diversity is associated with lower incidence of human West Nile infection:observation of the dilution effect[J]. PLoS One, 2008,3(6):e2488. DOI: 10.1371/journal.pone.0002488.
doi: 10.1371/journal.pone.0002488 pmid: 18575599 |
[36] |
CLAY C A, LEHMER E M, JEOR S S, et al. Sin nombre virus and rodent species diversity: a test of the dilution and amplification hypotheses[J]. PLoS One, 2009,4(7):e6467. DOI: 10.1371/journal.pone.0006467.
doi: 10.1371/journal.pone.0006467 pmid: 19649283 |
[37] |
SUZÁN G, MARCÉ E, GIERMAKOWSKI J T, et al. Experimental evidence for reduced rodent diversity causing increased Hantavirus prevalence[J]. PLoS One, 2009,4(5):e5461. DOI: 10.1371/journal.pone.0005461.
doi: 10.1371/journal.pone.0005461 pmid: 19421313 |
[38] |
JOHNSON P T, LUND P J, HARTSON R B, et al. Community diversity reduces Schistosoma mansoni transmission,host pathology and human infection risk[J]. Proc Biol Sci, 2009,276(1662):1657-1663. DOI: 10.1098/rspb.2008.1718.
doi: 10.1098/rspb.2008.1718 pmid: 19203926 |
[39] |
JOHNSON P T J, PRESTON D L, HOVERMAN J T, et al. Species diversity reduces parasite infection through cross-generational effects on host abundance[J]. Ecology, 2012,93(1):56-64. DOI: 10.1890/11-0636.1.
doi: 10.1890/11-0636.1 pmid: 22486087 |
[40] |
JOHNSON P T J, PRESTON D L, HOVERMAN J T, et al. Host and parasite diversity jointly control disease risk in complex communities[J]. PNAS, 2013,110(42):16916-16921. DOI: 10.1073/pnas.1310557110.
doi: 10.1073/pnas.1310557110 pmid: 24082092 |
[41] |
WOOD C L, MCINTURFF A, YOUNG H S, et al. Human infectious disease burdens decrease with urbanization but not with biodiversity[J]. Phil Trans R Soc B, 2017,372(1722):20160122. DOI: 10.1098/rstb.2016.0122.
doi: 10.1098/rstb.2016.0122 pmid: 28438911 |
[42] |
RANDOLPH S E, DOBSON A D. Pangloss revisited:a critique of the dilution effect and the biodiversity-buffers-disease paradigm[J]. Parasitology, 2012,139(7):847-863. DOI: 10.1017/s0031182012000200.
doi: 10.1017/S0031182012000200 pmid: 22336330 |
[43] |
HUANG Z Y X, YU Y, VAN LANGEVELDE F, et al. Does the dilution effect generally occur in animal diseases?[J]. Parasitology, 2017,144(6):823-826. DOI: 10.1017/s0031182016002572.
doi: 10.1017/S0031182016002572 pmid: 28073392 |
[44] |
CIVITELLO D J, COHEN J, FATIMA H, et al. Biodiversity inhibits parasites: broad evidence for the dilution effect[J]. PNAS, 2015,112(28):8667-8671. DOI: 10.1073/pnas.1506279112.
doi: 10.1073/pnas.1506279112 pmid: 26069208 |
[45] |
CLAY C A, LEHMER E M, ST JEOR S, et al. Testing mechanisms of the dilution effect:deer mice encounter rates,sin nombre virus prevalence and species diversity[J]. EcoHealth, 2009,6(2):250-259. DOI: 10.1007/s10393-009-0240-2.
pmid: 19495881 |
[46] |
SALKELD D J, PADGETT K A, JONES J H. A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic[J]. Ecol Lett, 2013,16(5):679-686. DOI: 10.1111/ele.12101.
doi: 10.1111/ele.12101 pmid: 23489376 |
[47] |
WOOD C L, LAFFERTY K D, DELEO G, et al. Does biodiversity protect humans against infectious disease?[J]. Ecology, 2014,95(4):817-832. DOI: 10.1890/13-1041.1.
doi: 10.1890/13-1041.1 pmid: 24933803 |
[48] |
YOUNG H, GRIFFIN R H, WOOD C L, et al. Does habitat disturbance increase infectious disease risk for Primates?[J]. Ecol Lett, 2013,16(5):656-663. DOI: 10.1111/ele.12094.
doi: 10.1111/ele.12094 pmid: 23448139 |
[49] | LIU X, CHEN L F, LIU M, et al. Dilution effect of plant diversity on infectious diseases:latitudinal trend and biological context dependence[J]. Oikos, 2020,129(4):457-465. DOI: 10.1111/oik.07027. |
[50] |
COHEN J M, CIVITELLO D J, BRACE A J, et al. Spatial scale modulates the strength of ecological processes driving disease distributions[J]. PNAS, 2016,113(24):E3359-E3364. DOI: 10.1073/pnas.1521657113.
doi: 10.1073/pnas.1521657113 pmid: 27247398 |
[51] |
MAGNUSSON M, FISCHHOFF I R, ECKE F, et al. Effect of spatial scale and latitude on diversity-disease relationships[J] . Ecology, 2020,101(3):e02955. DOI: 10.1002/ecy.2955.
doi: 10.1002/ecy.2955 pmid: 31840238 |
[52] | DOBSON A. Population dynamics of pathogens with multiple host species[J]. Am Nat, 2004,164(S5):S64-S78. DOI: 10.1086/424681. |
[53] |
RUDOLF V H, ANTONOVICS J. Species coexistence and pathogens with frequency-dependent transmission[J]. Am Nat, 2005,166(1):112-118. DOI: 10.1086/430674.
doi: 10.1086/430674 pmid: 15937794 |
[54] | ROY M, PASCUAL M. On representing network heterogeneities in the incidence rate of simple epidemic models[J]. Ecol Complex, 2006,3(1):80-90. DOI: 10.1016/j.ecocom.2005.09.001. |
[55] |
HARDSTAFF J L, MARION G, HUTCHINGS M R, et al. Evaluating the tuberculosis hazard posed to cattle from wildlife across Europe[J]. Res Vet Sci, 2014,97:S86-S93. DOI: 10.1016/j.rvsc.2013.12.002.
doi: 10.1016/j.rvsc.2013.12.002 pmid: 24423727 |
[56] |
HUANG Z Y X, DE BOER W F, VAN LANGEVELDE F, et al. Dilution effect in bovine tuberculosis:risk factors for regional disease occurrence in Africa[J]. Proc R Soc B, 2013,280(1765):20130624. DOI: 10.1098/rspb.2013.0624.
doi: 10.1098/rspb.2013.0624 pmid: 23804614 |
[57] |
HUANG Z Y, XU C, VAN LANGEVELDE F, et al. Dilution effect and identity effect by wildlife in the persistence and recurrence of bovine tuberculosis[J]. Parasitology, 2014,141(7):981-987. DOI: 10.1017/s0031182013002357.
doi: 10.1017/S0031182013002357 pmid: 24612552 |
[58] |
MOORE S M, BORER E T. The influence of host diversity and composition on epidemiological patterns at multiple spatial scales[J]. Ecology, 2012,93(5):1095-1105. DOI: 10.1890/11-0086.1.
doi: 10.1890/11-0086.1 pmid: 22764495 |
[59] |
PLANTEGENEST M, LE MAY C, FABRE F. Landscape epidemiology of plant diseases[J]. J R Soc Interface, 2007,4(16):963-972. DOI: 10.1098/rsif.2007.1114.
doi: 10.1098/rsif.2007.1114 pmid: 17650471 |
[60] |
WOOD C L, LAFFERTY K D. Biodiversity and disease:a synjournal of ecological perspectives on Lyme disease transmission[J]. Trends Ecol Evol, 2013,28(4):239-247. DOI: 10.1016/j.tree.2012.10.011.
doi: 10.1016/j.tree.2012.10.011 pmid: 23182683 |
[61] | SAUL A. Zooprophylaxis or zoopotentiation:the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while searching[J]. Malar J, 2003,2(1):1-18. DOI: 10.1186/1475-2875-2-32. |
[62] |
DOBSON A, CATTADORI I, HOLT R D, et al. Sacred cows and sympathetic squirrels:the importance of biological diversity to human health[J]. PLoS Med, 2006,3(6):e231. DOI: 10.1371/journal.pmed.0030231.
doi: 10.1371/journal.pmed.0030231 pmid: 16729846 |
[63] | SCHMIDT K A, OSTFELD R S. Biodiversity and the dilution effect in disease ecology[J]. Ecology, 2001,82(3):609-619. DOI: 10.1890/0012-9658(2001)082[0609:BATDEI]2.0.CO;2. |
[64] | VANDERWAAL K L, EZENWA V O. Heterogeneity in pathogen transmission:mechanisms and methodology[J]. Funct Ecol, 2016,30(10):1606-1622. DOI: 10.1111/1365-2435.12645. |
[65] |
CARDILLO M, MACE G M, JONES K E, et al. Multiple causes of high extinction risk in large mammal species[J]. Science, 2005,309(5738):1239-1241. DOI: 10.1126/science.1116030.
doi: 10.1126/science.1116030 pmid: 16037416 |
[66] |
HUANG Z Y, DE BOER W F, VAN LANGEVELDE F, et al.Species’ life-history traits explain interspecific variation in reservoir competence:a possible mechanism underlying the dilution effect[J]. PLoS One, 2013,8(1):e54341. DOI: 10.1371/journal.pone.0054341.
pmid: 23365661 |
[67] |
JOSEPH M B, MIHALJEVIC J R, ORLOFSKE S A, et al. Does life history mediate changing disease risk when communities disassemble?[J]. Ecol Lett, 2013,16(11):1405-1412. DOI: 10.1111/ele.12180.
doi: 10.1111/ele.12180 |
[68] |
HAN B A, SCHMIDT J P, BOWDEN S E, et al. Rodent reservoirs of future zoonotic diseases[J]. PNAS, 2015,112(22):7039-7044. DOI: 10.1073/pnas.1501598112.
doi: 10.1073/pnas.1501598112 pmid: 26038558 |
[69] |
JOHNSON P T J, ROHR J R, HOVERMAN J T, et al. Living fast and dying of infection:host life history drives interspecific variation in infection and disease risk[J]. Ecol Lett, 2012,15(3):235-242. DOI: 10.1111/j.1461-0248.2011.01730.x.
doi: 10.1111/j.1461-0248.2011.01730.x |
[70] |
GOTTDENKER N L, CHAVES L F, CALZADA J E, et al. Host life history strategy,species diversity,and habitat influence Trypanosoma cruzi vector infection in Changing landscapes[J]. PLoS Negl Trop Dis, 2012,6(11):e1884. DOI: 10.1371/journal.pntd.0001884.
doi: 10.1371/journal.pntd.0001884 pmid: 23166846 |
[71] |
HILY J M, GARCÍA A, MORENO A, et al.The relationship between host lifespan and pathogen reservoir potential:an analysis in the system Arabidopsis thaliana-cucumber mosaic virus[J]. PLoS Pathog, 2014,10(11):e1004492. DOI: 10.1371/journal.ppat.1004492.
doi: 10.1371/journal.ppat.1004492 pmid: 25375140 |
[72] | LAJEUNESSE M J, FORBES M R. Host range and local parasite adaptation[J]. Proc R Soc Lond B, 2002,269(1492):703-710. DOI: 10.1098/rspb.2001.1943. |
[73] |
OSTFELD R S, LEVI T, JOLLES A E, et al. Life history and demographic drivers of reservoir competence for three tick-borne zoonotic pathogens[J]. PLoS One, 2014,9(9):e107387. DOI: 10.1371/journal.pone.0107387.
doi: 10.1371/journal.pone.0107387 pmid: 25232722 |
[74] |
JOHNSON P T, PRESTON D L, HOVERMAN J T, et al. Biodiversity decreases disease through predictable changes in host community competence[J]. Nature, 2013,494(7436):230-233. DOI: 10.1038/nature11883.
doi: 10.1038/nature11883 pmid: 23407539 |
[75] |
LACROIX C, JOLLES A, SEABLOOM E W, et al. Non-random biodiversity loss underlies predictable increases in viral disease prevalence[J]. J R Soc Interface, 2014,11(92):20130947. DOI: 10.1098/rsif.2013.0947.
doi: 10.1098/rsif.2013.0947 pmid: 24352672 |
[76] | HANTSCH L, BRAUN U, SCHERER-LORENZEN M, et al. Species richness and species identity effects on occurrence of foliar fungal pathogens in a tree diversity experiment[J]. Ecosphere, 2013,4(7):1-12. DOI: 10.1890/ES13-00103.1. |
[77] | LOREAU M. Separating sampling and other effects in biodiversity experiments[J]. Oikos, 1998,82(3):600. DOI: 10.2307/3546381. |
[78] |
BECKER C G, RODRIGUEZ D, TOLEDO L F, et al. Partitioning the net effect of host diversity on an emerging amphibian pathogen[J]. Proc R Soc B, 2014,281(1795):20141796. DOI: 10.1098/rspb.2014.1796.
doi: 10.1098/rspb.2014.1796 pmid: 25297867 |
[79] | WEBB C O, ACKERLY D D, MCPEEK M A, et al. Phylogenies and community ecology[J]. Annu Rev Ecol Syst, 2002,33(1):475-505. DOI: 10.1146/annurev.ecolsys.33.010802.150448. |
[80] |
FOUNTAIN-JONES N M, PEARSE W D, ESCOBAR L E, et al. Towards an eco-phylogenetic framework for infectious disease ecology[J]. Biol Rev, 2018,93(2):950-970. DOI: 10.1111/brv.12380.
doi: 10.1111/brv.12380 pmid: 29114986 |
[81] | LONGDON B, HADFIELD J D, WEBSTER C L, et al. Host phylogeny determines viral persistence and replication in novel hosts[J]. PLoS Pathog, 2011,7(9):e1002260. DOI: 10.1371/journal.ppat.1002260. |
[82] |
PEDERSEN A B, DAVIES T J. Cross-species pathogen transmission and disease emergence in Primates[J]. EcoHealth, 2009,6(4):496-508. DOI: 10.1007/s10393-010-0284-3.
doi: 10.1007/s10393-010-0284-3 pmid: 20232229 |
[83] |
STREICKER D G, TURMELLE A S, VONHOF M J, et al. Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats[J]. Science, 2010,329(5992):676-679. DOI: 10.1126/science.1188836.
doi: 10.1126/science.1188836 pmid: 20689015 |
[84] |
HUANG S, BININDA-EMONDS O R, STEPHENS P R, et al.Phylogenetically related and ecologically similar carnivores harbour similar parasite assemblages[J]. J Anim Ecol, 2014,83(3):671-680. DOI: 10.1111/1365-2656.12160.
doi: 10.1111/1365-2656.12160 pmid: 24289314 |
[85] |
GILBERT G S, WEBB C O. Phylogenetic signal in plant pathogen-host range[J]. PNAS, 2007,104(12):4979-4983. DOI: 10.1073/pnas.0607968104.
doi: 10.1073/pnas.0607968104 pmid: 17360396 |
[86] |
OLIVAL K J, HOSSEINI P R, ZAMBRANA-TORRELIO C, et al. Host and viral traits predict zoonotic spillover from mammals[J]. Nature, 2017,546(7660):646-650. DOI: 10.1038/nature22975.
doi: 10.1038/nature22975 pmid: 28636590 |
[87] |
TUCKER C M, CADOTTE M W, CARVALHO S B, et al. a guide to phylogenetic metrics for conservation,community ecology and macroecology[J]. Biol Rev, 2017,92(2):698-715. DOI: 10.1111/brv.12252.
doi: 10.1111/brv.12252 pmid: 26785932 |
[88] | SWENSON N G. Functional and phylogenetic ecology in R[M/OL]. [2014-01-01].http:www.springer.com.DOI: 10.1007/978-1-4614-9542-0. |
[89] | WANG Y X G, MATSON K D, PRINS H H T, et al. Phylogenetic structure of wildlife assemblages shapes patterns of infectious livestock diseases in Africa[J]. Funct Ecol, 2019,33(7):1332-1341. DOI: 10.1111/1365-2435.13311. |
[90] |
LIU X, LYU S M, ZHOU S R, et al. Warming and fertilization alter the dilution effect of host diversity on disease severity[J]. Ecology, 2016,97(7):1680-1689. DOI: 10.1890/15-1784.1.
doi: 10.1890/15-1784.1 pmid: 27859159 |
[91] |
PARKER I M, SAUNDERS M, BONTRAGER M, et al. Phylogenetic structure and host abundance drive disease pressure in communities[J]. Nature, 2015,520(7548):542-544. DOI: 10.1038/nature14372.
doi: 10.1038/nature14372 pmid: 25903634 |
[92] | HUANG Z Y X, XU C, VAN LANGEVELDE F, et al. Contrasting effects of host species and phylogenetic diversity on the occurrence of HPAI H5N1 in European wild birds[J]. J Animal Ecol, 2019,88(7):1044-1053. DOI: 10.1111/1365-2656.12997. |
[93] |
ESSER H J, HERRE E A, BLÜTHGEN N, et al.Host specificity in a diverse Neotropical tick community:an assessment using quantitative network analysis and host phylogeny[J]. Parasit Vectors, 2016,9(1):372. DOI: 10.1186/s13071-016-1655-6.
doi: 10.1186/s13071-016-1655-6 pmid: 27357506 |
[94] |
KILPATRICK A M, SALKELD D J, TITCOMB G, et al. Conservation of biodiversity as a strategy for improving human health and well-being[J]. Phil Trans R Soc B, 2017,372(1722):20160131. DOI: 10.1098/rstb.2016.0131.
doi: 10.1098/rstb.2016.0131 pmid: 28438920 |
[95] |
HECHINGER R F, LAFFERTY K D. Host diversity begets parasite diversity:bird final hosts and Trematodes in snail intermediate hosts[J]. Proc R Soc B, 2005,272(1567):1059-1066. DOI: 10.1098/rspb.2005.3070.
doi: 10.1098/rspb.2005.3070 pmid: 16024365 |
[96] |
ROTTSTOCK T, JOSHI J, KUMMER V, et al. Higher plant diversity promotes higher diversity of fungal pathogens,while it decreases pathogen infection per plant[J]. Ecology, 2014,95(7):1907-1917. DOI: 10.1890/13-2317.1.
doi: 10.1890/13-2317.1 pmid: 25163123 |
[97] |
MORAND S, JITTAPALAPONG S, SUPUTTAMONGKOL Y, et al. Infectious diseases and their outbreaks in Asia-Pacific:biodiversity and its regulation loss matter[J]. PLoS One, 2014,9(2):e90032. DOI: 10.1371/journal.pone.0090032.
doi: 10.1371/journal.pone.0090032 pmid: 24587201 |
[98] | FAHRIG L. Effects of habitat fragmentation on biodiversity[J]. Annu Rev Ecol Evol Syst, 2003,34(1):487-515. DOI: 10.1146/annurev.ecolsys.34.011802.132419. |
[99] |
LOGIUDICE K, DUERR S T K, NEWHOUSE M J, et al.Impact of host community composition on Lyme disease risk[J]. Ecology, 89(10):2841-2849. DOI: 10.1890/07-1047.1.
doi: 10.1890/07-1047.1 pmid: 18959321 |
[100] |
HUANG Z Y X, VAN LANGEVELDE F, PRINS H H T, et al. Dilution versus facilitation: impact of connectivity on disease risk in metapopulations[J]. J Theor Biol, 2015,376:66-73. DOI: 10.1016/j.jtbi.2015.04.005.
doi: 10.1016/j.jtbi.2015.04.005 pmid: 25882748 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||