对7年生厚荚相思人工林生态系统的碳素含量、贮量及其空间分布特征进行了研究。结果表明:厚荚相思不同器官碳素含量为470.1~533.8 g/kg,排序从大到小依次为树叶、树枝、树干、树根、树皮。灌木层、草本层和凋落物层碳素含量分别为465.4、425.7和478.3 g/kg。土壤(0~80 cm)平均碳素含量为12.94 g/kg,随土层深度的增加,各层次土壤碳素含量逐渐减少。厚荚相思人工林生态系统总碳贮量为141.05 t/hm2,其中乔木层为46.97 t/hm2,占整个生态系统碳贮量的33.30%;灌草层为2.07 t/hm2,占1.47%;凋落物层为4.49 t/hm2,占3.18%;林地土壤(0~80 cm)为92.01 t/hm2,占65.23%。厚荚相思各器官碳贮量与其生物量成正比例关系,树干的碳贮量最高,占乔木层碳贮量的52.20%,树枝、树叶、树皮和树根等碳贮量共占乔木层的47.80%。7年生厚荚相思人工林乔木层年净生产力为20.06 t/(hm2·a),碳素年净固定量为9.86 t/(hm2·a)。
Abstract
The content, storage and distribution of carbon in 7yearold Acacia crassicarpa plantation ecosystem were studied. The results showed that carbon content in different organs of A.crassicarpa trees ranged from 470.1 g/kg to 533.8 g/kg, and decreased in the order of leaf>branch>stem>root>bark.The carbon content in shrub, herb and litter floor were 4654 g/kg, 425.7 g/kg and 478.3 g/kg, respectively. Carbon content in the soil (0—80 cm) was 12.94 g/kg and declines with soil depth. The total carbon storage in A.crassicarpa plantation ecosystems amounted to 141.05 t/hm2, of which overstorey of A.crassicarpa stored 46.97 t/hm2 and accounted for 33.30%, and understorey plant stored 2.07 t/hm2 and accounted for 1.47%, and litter floor stored 4.49 t/hm2 and accounted for 3.18%, and soil stored 92.01 t/hm2 and accounted for 65.23%. The carbon storage in different organs was positively related to the biomass of corresponding organs. Stem accumulated the highest carbon storage, comprised 52.20% of carbon storage in overstory trees, the rest in branch, leaf, bark and root, etc., seized 47.80%. The annual net productivity of 7yearold A.crassicarpa plantation was 20.06 t/(hm2·a) and annual carbon fixation was up to 9.86 t/(hm2·a).
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Mathi Y, Baldoeehi D D, Jarvis P G. The carbon balance of tropical,temperate and boreal forests[J]. Plant Cell and Enviroment, 1999, 22: 715-740.
[2]Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263: 185-190.
[3]方精云,陈安平. 中国森林植被碳库动态变化及其意义[J]. 植物学报,2001,43(9):967-973.
[4]刘国华,傅伯杰,方精云. 中国森林碳动态及其对全球碳平衡的贡献[J]. 生态学报,2000,20(5):733-740.
[5]周玉荣,于振良,赵士洞. 我国主要森林生态系统碳贮量和碳平衡[J]. 植物生态学报,2000,24(5):518-522.
[6]王效科,冯宗炜,欧阳志云. 中国森林生态系统的植物碳储量和碳密度研究[J]. 应用生态学报,2001,12(1):13-16.
[7]Jiang H, Apps M L, Peng C H. Modeling the influence of harvesting on Chinese boreal forest carbon dynamics[J]. Forest Ecology and Management, 2002, 169: 65-82.
[8]阮宏华,姜志林,高苏铭. 苏南丘陵主要森林类型碳循环研究——含量与分布规律[J]. 生态学杂志,1997,16(6):17-21.
[9]Zhang J, Ge Y, Chang J. Carbon storage by ecological service forests in Zhejiang Province, subtropical China[J]. Forest Ecology and Management, 2007, 245: 64-75.
[10]潘志刚,吕鹏信,杨民权,等. 5种热带相思3年种源试验初报[J]. 林业科学研究,1988,1(5):553-559.[11]Arnold R J, Cuevas E. Genetic variation in early growth, stem straightness and survival in Acacia crassicarpa, A.mangiu and Eucalyptus urophylla in Bukidnon Province, Philppines[J]. Journal of Tropical Forest Science, 2003, 15(2): 332-351.
[12]秦武明,何斌,覃世赢. 厚荚相思人工林生物量和生产力变化规律研究[J]. 西北林学院学报,2008,23(2):17-20.
[13]秦武明,何斌,覃世赢,等. 厚荚相思人工林营养元素生物循环的研究[J]. 水土保持学报,2007,21(4):103-108.
[14]房用,王淑军.石灰岩山地中侧柏、油松混交林的生物量[J].南京林业大学学报:自然科学版,2007,31(3):62-66.
[15]中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M]. 北京:科学出版社,1983.
[16]尉海东,马祥庆. 中亚热带不同发育阶段杉木人工林生态系统碳贮量研究[J]. 江西农业大学学报,2006,28(2):239-243,267.
[17]尉海东,马祥庆. 不同发育阶段马尾松人工林生态系统碳贮量研究[J]. 西北农林科技大学学报:自然科学版,2007,35(1):371-374.
[18]肖复明,范少辉,汪思龙,等. 毛竹(Phyllostachys pubescens)、杉木(Cunninghamia lanceolata)人工林生态系统碳贮量及其分配特征[J]. 生态学报,2007,27(7):2794-2801.
[19]Onigkeit J, Sonntag M, Alcamo J. Carbon Plantations in the IMAGE Modelmodel Description and Scenarios. WZ III Report No. P00031 Center for Environmental Systems Research[R]. Germany: University of Kassel, 2000.
[20]杨玉盛,陈光水,王义祥,等. 格氏栲人工林和杉木人工林碳吸存与碳平衡[J]. 林业科学,2007,43(3):113-117.
基金
收稿日期:2008-08-20修回日期:2008-12-23基金项目:广西科学基金资助项目(桂科自0640018);广西教育厅科研基金(2006-26);广西“十五“林业科学研究项目(2002-66)作者简介:何斌(1962—),研究员,研究方向为森林土壤和森林生态。Email: hebin125@sina.com。引文格式:何斌, 余春和, 王安武,等. 厚荚相思人工林碳素贮量及其空间分布[J]. 南京林业大学学报:自然科学版,2009,33(3):46-50.