木材微纤丝角和密度与弹性模量的关系

吴燕1,2,周定国1*,王思群1,2,张洋1,邢成2

南京林业大学学报(自然科学版) ›› 2009, Vol. 33 ›› Issue (04) : 113-116.

PDF(603447 KB)
PDF(603447 KB)
南京林业大学学报(自然科学版) ›› 2009, Vol. 33 ›› Issue (04) : 113-116. DOI: 10.3969/j.jssn.1000-2006.2009.04.024
研究论文

木材微纤丝角和密度与弹性模量的关系

  • 吴燕1,2,周定国1*,王思群1,2,张洋1,邢成2
作者信息 +

Relationship of wood MFA and density with elastic modulus

  • WU Yan1,2, ZHOU Dingguo1*, WANG Siqun1,2,ZHANG Yang1, XING Cheng2
Author information +
文章历史 +

摘要

利用SilviScan系统测量了美国白橡(Quercus alba)与红橡(Quercus rubra)不同年轮木材的微纤丝角和密度,并计算得到相应的纵向弹性模量值。红橡木材样品的弹性模量平均值为16.34 GPa,高于白橡的(13.11 GPa),并且从心材到边材方向上无明显的变化。而白橡木材样品中由于幼龄材的存在,距离髓心40 mm范围内,弹性模量值较低,相应的微纤丝角的值较高;从40 mm处到树皮方向变化不显著。沿所测量的径向方向45个年轮范围内,红橡木材样品的微纤丝角明显低于白橡木材样品。

Abstract

The microfibril angle (MFA) and wood density of white oak (Quercus alba) and red oak (Quercus rubra) were measured by SilviScan system, the elastic modulus (MOE) being also calculated. The mean value of MOE in red oak (Quercus rubra) sample was 16.34 GPa higher than white oak (Quercus alba) sample (13.11 GPa). There was no significant difference of MOE in red oak from pith to bark. However, white oak sample showed high MOE and MFA for the first 40 mm, which probably corresponded to juvenile wood; from 40 mm position to bark direction the change was not distinct. The value of MFA was lower in red oak than in white oak along radial direction within the measured 45 growth rings.

引用本文

导出引用
吴燕1,2,周定国1*,王思群1,2,张洋1,邢成2. 木材微纤丝角和密度与弹性模量的关系[J]. 南京林业大学学报(自然科学版). 2009, 33(04): 113-116 https://doi.org/10.3969/j.jssn.1000-2006.2009.04.024
WU Yan1,2, ZHOU Dingguo1*, WANG Siqun1,2,ZHANG Yang1, XING Cheng2. Relationship of wood MFA and density with elastic modulus[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2009, 33(04): 113-116 https://doi.org/10.3969/j.jssn.1000-2006.2009.04.024
中图分类号: TS653   

参考文献

[1]American Hardwood Expert Coucil. US red Oakoverpowering charming[J]. Materials & Technology, 2008, 62(4): 118-119.
[2]Alden H A. Hardwoods of North America[C]//Gen Tech Rep FPLGTR83. Madison WI. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 1995.
[3]Cave I D. The anisotropic elasticity of the plant cell wall[J]. Wood Science and Technology, 1968, 2(4): 268-278.
[4]Cave I D. The longitudinal modulus of Pinus radiata[J]. Wood Science and Technology, 1969, 3(1): 40-48.
[5]Tze W T, Wang S Q, Rials T G, et al. Nanoindentation of wood cell wall: Continuous stiffness and hardness measurements[J]. Composites Part A 3, 2007, 8: 945-953.
[6]Cown D J, Herbert J, Ball R D. Modelling Pinus radiate lumber characteristics Part 1[J]. Mechanical properties of small clears. NZ J For Sci, 1999, 29: 203-213.
[7]Evans R, Ilic J. Rapid prediction of wood stiffness from microfibril angle and density[J]. Forest Products Journal, 2001, 51(3): 53-57.
[8]Holmberg H. Influence of grain angle on Brinell hardness of scots pine (Pinus sylvestris L.)[J]. Holz als Rohund Werkstoff, 2000, 58: 91-95.
[9]Kollman F F P, Cté W A. Principle of wood science and technology[M]. Berlin: SpringerVerlag, 1968.
[10]Miyajima H. Studies in the indentation hardness of wood[J]. Res Bull For Hokkaido University, 1963, 22(2): 539-607.
[11]Ylinen A. ber den Einfluβ der Rohwichte und des Sptholzanteils auf die Brinellh?rte des Holzes[J]. Holz als Rohund Werkstoff, 1934, 6(4): 125-127.
[12]Evans R. Rapid scanning of microfibril angle in increment cores by Xray diffractometry[C]//B.G. Butterfield. Microfibril Angle in Wood. Pro. IAWA/IUFRO International Workshop on the Significance of Microfibril Angle to Wood Quality, New Zealand: University of Canterbury Press, 1997.
[13]Evans R. A variance approach to the Xray diffractometric estimation of microfibril angle in wood[J]. Appita, 1999, 51: 53-57.
[14]尹思慈. 木材学[M]. 北京:中国林业出版社, 1996.

基金

收稿日期:2008-07-21修回日期:2009-05-12基金项目:国家“十一五”科技支撑计划(2006BAD07A07-04)作者简介:吴燕(1979—),博士生。*周定国(通讯作者),教授,研究方向为木材科学与技术。Email: zhoudg@njfu.edu.cn。引文格式:吴燕,周定国,王思群,等. 木材微纤丝角和密度与弹性模量的关系[J]. 南京林业大学学报:自然科学版,2009,33(4):113-116.

PDF(603447 KB)

Accesses

Citation

Detail

段落导航
相关文章

/