毛竹材质生成过程中微纤丝角的变化

杨淑敏,江泽慧*,任海青,费本华

南京林业大学学报(自然科学版) ›› 2009, Vol. 33 ›› Issue (05) : 73.

南京林业大学学报(自然科学版) ›› 2009, Vol. 33 ›› Issue (05) : 73. DOI: 10.3969/j.jssn.1000-2006.2009.05.016
研究论文

毛竹材质生成过程中微纤丝角的变化

  • 杨淑敏,江泽慧*,任海青,费本华
作者信息 +

Variations of the microfibril angle in developmental moso bamboo culms

  • YANG Shumin, JIANG Zehui*, REN Haiqing, FEI Benhua
Author information +
文章历史 +

摘要

应用X射线衍射法对不同竹龄毛竹材的微纤丝角进行测定分析,探讨毛竹微纤丝角的生长发育规律。结果表明:各竹龄竹材细胞次生壁微纤丝角的径向变异规律呈现波动趋势,平均微纤丝角为9.4°,最大值和最小值分别为12.05°和7.61°,差值小于4.44°,微纤丝角从竹青到竹黄存在显著差异。竹材的微纤丝角从0.5~1.5 a呈增加趋势,而后几年呈下降趋势,到6.5年稍有回升,随后又下降,直至10.5年生竹材微纤丝角值又变得较大,竹龄对微纤丝角影响显著。竹秆的中部和下部平均微纤丝角分别为9.32°、9.39°和9.50°,随竹秆高度增加竹材微纤丝角逐渐减小,差异较显著。

Abstract

The microfibril angle of moso bamboo aged from 1.5 to 10.5 years was measured and analyzed by Xray diffraction estimation. Temporal and spatial variation patterns were studied in this paper. The results showed that the radial variation of the microfibril angle of secondary cell wall within ages took irregular tendency with the distance ranged from bark to pith. The average, maximum and minimum of radial microfibril angle separately was 9.4°, 12.05° and 7.61°,the difference is less than 4.44° . The microfibril angle increased from 0.5 to 1.5 year, following decreased, then increased reached 6.5 year, but a large value present in 10.5 year. There was significant difference between age of bamboo and microfibril angle. Longitudinal variations of MFA decreased with increased bamboo height, with 9.32°,9.39°and 9.50° separately in the top, middle and base of bamboo.

引用本文

导出引用
杨淑敏,江泽慧*,任海青,费本华. 毛竹材质生成过程中微纤丝角的变化[J]. 南京林业大学学报(自然科学版). 2009, 33(05): 73 https://doi.org/10.3969/j.jssn.1000-2006.2009.05.016
YANG Shumin, JIANG Zehui*, REN Haiqing, FEI Benhua. Variations of the microfibril angle in developmental moso bamboo culms[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2009, 33(05): 73 https://doi.org/10.3969/j.jssn.1000-2006.2009.05.016
中图分类号: S795   

参考文献

[1]江泽慧. 世界竹藤[M]. 沈阳:辽宁科学技术出版社,2002.
[2]曹福亮. 林分密度对南方型杨树木材性质的影响[G]//吕士行,方升佐.杨树定向培育技术. 北京:中国林业出版社,1997.
[3]Walker J C F, Butterfield B G. The importance of microfibril angle to the processing industries[J]. New Zeal, 1996, 40: 34- 40.
[4]孙成志,尹思慈. 十种国产针叶树材管胞次生壁纤丝角的测定[J]. 林业科学,1980,16(4):302-303.
[5]Senft F J, Bendtsen A B. Measuring microfibrillar angles using light microscopy[J]. Wood and Fiber Science, 1980,17(4):564-567.
[6]江泽慧,邹惠渝,阮锡根,等. 应用X射线衍射技术研究竹材超微结构I.竹材纤丝角[J]. 林业科学,2000,36(3):122-125.
[7]王朝晖. 竹材材性变异规律与加工利用研究[D]. 北京:中国林业科学研究院,2001.
[8]余雁,王戈,覃道春,等. X射线衍射法研究毛竹微纤丝角的变异规律[J]. 东北林业大学学报,2007,35(8):28-29,51.
[9]Cave I D. Theory of Xray measurement of microfibril angle[J]. Forest Products Journal, 1966, 16(10): 37-42.
[10]Stuart S, Evans R. Xray diffraction estimation of the microfibril angle variation in eucalypt wood[J]. Appita, 1994, 48(3): 197-200.
[11]Shupe T F, Choong E T, Stokke D D, et al. Variation in cell dimensions and fibril angle for two fertilized evenaged loblolly pine plantations[J]. Wood and Fiber Science, 1996, 28(2): 268-275.
[12]Kellogg R M, Thykeson E. Predicting kraft mill paper strength from fiber properties[J]. Tappi, 1975, 58(4): 131-135.
[13]Armstrong J P, Kyanka G H, Thorpe J L. S2 fibril angleelastic modulus relationship of TMP Scotch pine fibers[J]. Wood Science, 1977, 10(2): 72-80.
[14]Cave I D, Walker J C F. Stiffness of wood in fastgrown plantation softwoods: the influence of microfibril angle[J]. For Prod J, 1994, 44: 43-48.
[15]Macdonaled E, Hubert J. A review of the effects of silviculture on timber quality of Sitka spruce[J]. Forestry, 2002, 75(2): 107-138.
[16]Saka S. Relationship between microfibrillar angles and lignin content in the S2 layer of softwood trachieds[J]. Cellulose chemistry and technology, 1987, 21(3): 225-231.
[17]McMillin C W. Fibril angle of loblolly pine wood as related to specific gravity[J]. Wood Sci Tech, 1973, 2: 166-176.
[18]Donaldson L A. Withinand betweentree variation in microfibril angle in Pinus radiata[J]. N Z J For Sci, 1992, 22: 77-86.
[19]Donaldson L A. Variation in microfibril angle among three genetic group of Pinus radiata trees[J]. New Zealand Journal of Forestry Sci, 1993, 23(1): 90-99.
[20]刘盛全,江泽慧,鲍甫成. 人工林杨树木材性质与生长培育关系的研究[J]. 林业科学,2001,37(2):90-96.
[21]Lindstrm H, Evans J M, Verill S P. Influence of cambial age and growth conditions on microfibril angle in young Norway spruce(Picea abies (L.) Karst.)[J]. Holzforschung, 1998, 52: 573-581.
[22]费本华,江泽慧,阮锡根. 银杏木材微纤丝角及其生长轮密度相关模型的建立[J]. 木材工业,2000,14(3):13-15.
[23]Bonham V A, Barnett J R. Fibre length and microfibril angle in silver birch(Betula pendula Roth)[J]. Holzforschung, 2001(55): 159-162.
[24]Donaldson L A. Effect of physiological age and site on microfibril angle in Pinus radiata[J]. IAWA Journal, 1996, 17(4): 421-429.
[25]阮锡根,王婉华,潘彪. 应力木纤丝角的研究[J]. 林业科学,1993,29(6):534-536. [26]Evans R, Stringer S, Kibblewhite R P. Variation in microfibril angle, density and fibre orientation in twentynine Eucalyptus nitens trees[J]. Appita J, 2000, 53: 450-457.

基金

收稿日期:2008-11-01修回日期:2009-05-21基金项目:国家“十一五”科技支撑计划(2006BAD19B0403)作者简介:杨淑敏(1972—),博士后。*江泽慧(通讯作者),教授,研究方向为木材科学与技术。Email: shangke620@hetmail.com。引文格式:杨淑敏,江泽慧,任海青,等. 毛竹材质生成过程中微纤丝角的变化[J]. 南京林业大学学报:自然科学版,2009,33(5):73-76.

Accesses

Citation

Detail

段落导航
相关文章

/