不同大豆品种对根际土壤微生物群落影响的差异

钱秋平,杨统一,程林润,李永春,戚金亮,杨永华

南京林业大学学报(自然科学版) ›› 2010, Vol. 34 ›› Issue (05) : 1-6.

南京林业大学学报(自然科学版) ›› 2010, Vol. 34 ›› Issue (05) : 1-6. DOI: 10.3969/j.jssn.1000-2006.2010.05.001
研究论文

 不同大豆品种对根际土壤微生物群落影响的差异

  • 钱秋平1,杨统一2,程林润1,李永春2,戚金亮2,杨永华2*
作者信息 +

 Differential responses of rhizosphere microbial communities to the planting of
different soybean varieties

  •  QIAN Qiuping<sup>1</sup>, YANG Tongyi<sup>2</sup>, CHENG Linrun<sup>1</sup>, LI Yongchun<sup>2</sup>, QI Jinliang<sup>2</sup>, YANG Yonghua<sup>2*</sup>
Author information +
文章历史 +

摘要

 采用磷脂脂肪酸(phospholipid fatty acid, PLFA)分析法研究4个大豆品种(台湾75、中黄42、春丰早和六月半)对根际土壤微生物区系的影响。结果发现:尽管不同大豆品种在红壤(黄筋泥土)中的生物量和产量差别很大,但对根际土壤好氧菌、厌氧菌、革兰氏阴性菌、革兰氏阳性菌、放线菌和原生动物的影响不大;六月半品种显著影响根际土壤真菌PLFA总量,改变了细菌/真菌的比值;与六月半相比,春丰早显著增加了根际微生物群落的多样性、群落的优势种群和均匀度;中黄42显著提高了根际微生物群落优势种群的丰富度;中黄42和台湾75对根际土壤微生物Shannon均匀度的影响也有显著差异;但是4种大豆品种对根际土壤微生物群落的McIntosh和Gini多样性指数没有显著影响。主成分分析结果表明,六月半和中黄42品种对根际微生物的影响差异明显,而春丰早和台湾75变化相近,差异不明显。

Abstract

 The effects of the planting of four soybean varieties (Taiwan 75, Zhonghuang 42, Chunfengzao and Liuyueban) on rhizosphere microbial communities were studied by using phospholipid fatty acid analysis (PLFA). The results showed that the soybean varieties in acidic soil had no significant effects on the microbial community diversity, such as aerobic bacteria, anaerobic bacteria, Gramnegative bacteria, Grampositive bacteria, actinomycetes and protozoa, except the impact of the Liuyueban on fungi and the ratio of bacteria/fungi, although they showed obvious differences in the biomass and yield. Compared with the Liuyueban, the Chunfengzao had significantly increased rhizosphere microbial community diversity, and improved the dominant species and evenness. The Zhonghuang 42 had significantly increased the richness of dominant species, and had also a significant difference with Taiwan 75 in Shannon evenness. However, the four genotypes of soybean had no significant effects on McIntosh and Gini indices. Further, principal component analysis (PCA) showed that the Liuyueban and Zhonghuang 42 had significantly different effects on rhizosphere microbes, while the Chunfengzao and Taiwan 75 had a similar effect on the microbial community. These results facilitate our understanding about the interaction between soybean varieties and rhizosphere microbial communities in acidic soil.

引用本文

导出引用
钱秋平,杨统一,程林润,李永春,戚金亮,杨永华.  不同大豆品种对根际土壤微生物群落影响的差异[J]. 南京林业大学学报(自然科学版). 2010, 34(05): 1-6 https://doi.org/10.3969/j.jssn.1000-2006.2010.05.001
 QIAN Qiuping<sup>1</sup>, YANG Tongyi<sup>2</sup>, CHENG Linrun<sup>1</sup>, LI Yongchun<sup>2</sup>, QI Jinliang<sup>2</sup>, YANG Yonghua<sup>2*</sup>.  Differential responses of rhizosphere microbial communities to the planting of
different soybean varieties[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2010, 34(05): 1-6 https://doi.org/10.3969/j.jssn.1000-2006.2010.05.001
中图分类号: S764   

参考文献

 [1]Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review[J]. Biology and Fertility of Soils, 1999, 29(2): 111-129.
[2]Puglisi E M, Nicelli E, Capri M Trevisan, et al. A soil alteration index based on phospholipid fatty acids[J]. Chemosphere, 2005, 61(11): 1548-1557.
[3]Doran J W, Zeiss M R. Soil health and sustainability: managing the biotic component of soil quality[J]. Applied Soil Ecology, 2000, 15(1): 3-11.
[4]Cocking E C. Endophytic colonization of plant roots by nitrogenfixing bacteria[J]. Plant and Soil, 2003, 252(1): 169-175.
[5]O’Donnell AG, Seasman M, Macrae A, et al. Plants and fertilisers as drivers of change in microbial community structure and function in soils[J]. Plant and Soil, 2001, 232(1): 135-145.
[6]Zelles L, Q Y Bai, T Beck, et al. Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils[J]. Soil Biology and Biochemistry, 1992, 24(4): 317-323.
[7]Widmer F A, Flieach E, Laczk J. et al. Assessing soil biological characteristics: a comparison of bulk soil community DNA, PLFA, and Biolog(TM)analyses[J]. Soil Biology and Biochemistry, 2001, 33(7-8): 1029-1036.
[8]Vestal J R, D C White. Lipid analysis in microbial ecology: quantitative approaches to the study of microbial communities[J]. Bioscience, 1989, 39: 535-541.
[9]Wang X X, Yan H Liao. Genetic improvement for phosphorus efficiency in soybean: a radical approach[J]. Annal Botany, 2010, 106(1): 215-222.
[10]韩希英,宋凤斌. 干旱胁迫对玉米根际氮的有效性及其相关酶活性和细菌的影响[J]. 干旱地区农业研究,2007,25(2):71-76.
[11]Frostegrd A, E Bth. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil[J]. Biology and Fertility of Soils, 1996, 22(1): 59-65.
[12]White D, Findlay R. Biochemical markers for measurement of predation effects on the biomass, community structure, nutritional status, and metabolic activity of microbial biofilms[J]. Hydrobiologia, 1988, 159(1): 119-132.
[13]Dowling N J E F, Widdel D C White. Phospholipid esterlinked fatty acid biomarkers of acetateoxidizing sulphatereducers and other sulphideforming bacteria[J]. Journal of General Microbiology, 1986, 132(7): 1815-1825.
[14]张秋芳,刘波,林营志,等. 土壤微生物群落磷脂脂肪酸PLFA生物标记多样性[J]. 生态学报,2009,29(8):4127-4137.
[15]Blackwood C B, Hudleston D, Zak D R, et al. Interpreting ecological diversity indices applied to terminal restriction fragment length polymorphism data: insights from simulated microbial communities[J]. Applied and Environmental Microbiology, 2007, 73(16): 5276-5283.
[16]XUE Dong, YAO HuaiYing, GE DeYong, et al. Soil microbial community structure in diverse land use systems: a comparative study using Biolog, DGGE, and PLFA Analyses[J]. Pedosphere, 2008, 18(5): 653-663.
[17]于树,汪荣宽,李双异. 应用PLFA方法分析长期不同施肥处理对玉米地土壤微生物群落结构的影响[J]. 生态学报,2008,28(9):4221-4227.
[18]Noble P A, Almeida J S, Lovell C R. Application of neural computing methods for interpreting phospholipid fatty acid profiles of natural microbial communities[J]. Applied and Environmental Microbiology, 2000, 66(2): 694-699.
[19]van Aarle I M, Olsson P A. Fungal lipid accumulation and development of mycelial structures by two arbuscular mycorrhizal fungi[J]. Applied and Environmental Microbiology, 2003, 69(11): 6762-6767.
[20]Villanueva L, Navarrete A, Urmeneta J, et al. Combined phospholipid biomarker-16S rRNA gene denaturing gradient gel electrophoresis analysis of bacterial diversity and physiological status in an intertidal microbial mat[J]. Applied and Environmental Microbiology, 2004, 70(11): 6920-6926.
[21]Singh B K, Munro S, Reid E, et al. Investigating microbial community structure in soils by physiological, biochemical and molecular fingerprinting methods[J]. European Journal of Soil Science, 2006, 57(1): 72-82.
[22]Song XH, Hopke P K, Bruns M A, et al. Pattern recognition of soil samples based on the microbial fatty acid contents[J]. Environmental Science & Technology, 1999, 33(20): 3524-3530.
[23]Bardgett R D, Lovell R D, Hobbs P J, et al. Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands[J]. Soil Biology and Biochemistry, 1999, 31(7): 1021-1030.
[24]Schutter M Schutter, Sandeno J, Sandeno Dick, et al. Seasonal, soil type, and alternative management influences on microbial communities of vegetable cropping systems[J]. Biology and Fertility of Soils, 2001, 34(6): 397-410.
[25]Vepslinen M, Erkomaa K, Kukkonen S, et al. The impact of crop plant cultivation and peat amendment on soil microbial activity and structure[J]. Plant and Soil, 2004, 264(1): 273-286.
[26]Bodelier P L E, Roslev P, Henckel T, et al. Stimulation by ammoniumbased fertilizers of methane oxidation in soil around rice roots[J]. Nature, 2000, 403(6768): 421-424.

基金

 收稿日期:2010-05-13修回日期:2010-08-05基金项目:国家自然科学基金项目(40771107,30971871,40371071);教育部重大项目培育基金项目(707027)作者简介:钱秋平(1961—),高级农艺师。*杨永华(通信作者),教授。Email: yangyh@nju.edu.cn。引文格式:钱秋平,杨统一,程林润,等. 不同大豆品种对根际土壤微生物群落影响的差异[J]. 南京林业大学学报:自然科学版,2010,34(5):1-6.

Accesses

Citation

Detail

段落导航
相关文章

/