南京林业大学学报(自然科学版) ›› 2010, Vol. 34 ›› Issue (06): 164-168.doi: 10.3969/j.jssn.1000-2006.2010.06.036

• 研究简报 • 上一篇    

基于核模糊聚类的遥感影像分类

史云松,史玉峰*   

  1. 南京林业大学土木工程学院,江苏南京210037
  • 出版日期:2010-12-27 发布日期:2010-12-27
  • 基金资助:
    收稿日期:2010-01-06修回日期:2010-07-26基金项目:南京林业大学引进高层次人才和高层次留学回国人员科研基金项目(G2009-04);南京林业大学土木工程学院研究生创新基金 项目(YC2009-5)作者简介:史云松(1987—),硕士生。*史玉峰(通信作者),教授。Email: yufeng788@163.com。引文格式:史云松,史玉峰.

Classification of remote sensing image based on kernel fuzzy Cmeans

SHI Yunsong, SHI Yufeng*   

  1. College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
  • Online:2010-12-27 Published:2010-12-27

摘要: 基于模糊模式识别原理和核方法特性,提出了基于核的模糊聚类算法,用核目标函数取代模糊C均值中的目标函数,选用高斯核函数实例研究了模糊核聚类在遥感影像分类中 的应用。结果表明:与传统的模糊聚类算法相比,模糊核聚类算法能够有效改善遥感影像分类效果,从而拓宽了模糊模式识别的应用范围。

Abstract: Based on the principle of fuzzy pattern recognition and the characteristics of kernelbased method, an algorithm of kernelbased fuzzy clustering is put forward. Based on the principle of fuzzy pattern recognition and the characteristics of kernel method, the objective function of fuzzy Cmeans is substituted with a kernel objective function and the Gaussian kernel function is used in a kernelbased fuzzy clustering. The approach of kernelbased fuzzy clustering is used in the classification of remote sensing image, and the result shows that it can effectively improve the classification accuracy of remote sensing images compared with the traditional fuzzy Cmeans clustering. The approach presented in this paper can develop the application range of fuzzy pattern recognition.

中图分类号: