通过为期60 d的田间模拟试验,以1年生落羽杉、美国山核桃和乌桕实生苗为试材,对3树种在涝渍胁迫下的适应性和生理调节机制进行了初步研究。结果表明:(1)3树种具有不同程度的耐涝能力。在淹水和渍水胁迫的前30 d,3树种叶片内的超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(ASA-POD)活性,以及抗坏血酸(ASA)、还原性谷胱甘肽(GSH)、脯氨酸(Pro)含量和可溶性蛋白(SP)含量皆呈显著上升趋势。(2)3树种耐涝能力存在显著差异,其中落羽杉的耐涝性最强,美国山核桃的次之,乌桕的最弱。在50 d的淹水胁迫期内,落羽杉叶片或根系中的SOD等6个指标的平均增量显著超过美国山核桃和乌桕,而且前者可保持连续增长并维持在较高水平,而美国山核桃和乌桕在水分胁迫30 d后呈现大幅下降趋势。(3)3树种的耐水机制可能与形态建成、酶促和非酶促抗氧化、渗透调节等适应性环节的启动有关。
Abstract
Based on field simulation experiment of oneyearold seedlings during 60 days, the preliminary research, aimed to understand the waterlogging or flooding tolerance and adaptation mechanisms of three different three species(i.e. Taxodium distichum, Carya illinoensis, Sapium sebiferum), was conducted. The results were as follows:(1) In differn level, the three tree species all showed perfect ability tolerant to waterlogging or flooding. Under the first 30 days of waterlogging and flooding stress, superoxide dismutase (SOD) activity, ascorbic acid peroxidase (POD) activity, ascorbic acid (ASA) content, reducing glutathione (GSH) content, proline(Pro) content and soluble protein (SP) content in the leaves or roots of the three tree species, both showed significant rise. (2)However, there was a remarkable different in their waterlogging or flooding resistant ability among the three tree species. T. distichum had the strongest tolerance to waterlogging or flooding, C. illinoensis the middle, and S. sebiferum the most weakest. During the first 50 days of waterlogging or flooding stress, the average increment of SOD, ASAPOD, ASA, GSH activeness and Pro and SP content in the leave or roots of T. distichum were not only greatly higher than the ones in other two tree species, but also kept the continuing growth tendency and maintained at high levels, while those indexes in other two tree species showed a trend of sharp decline in 30 days of waterlogging or flooding. (3) For the 3 trees, water resistant mechanism was probably related to their regulation ability of seedling structure, antioxidant enzymes and antioxidant synthesis, etc.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Ponnamperuma E N. Effects of flooding on soils[C]// Kozlowski T T. Flooding and Plant Growth. Orland: Academic Press Inc, 1984.
[2]Crawford R M M, Braendle R. Oxygen deprivation stress in a changing environment[J]. Jour Exp Bot, 1996, 47(295): 145-159.
[3]Visser E J W, Voesenek L A C J, Vartapetian BB, et al. Flooding and plant growth[J]. Annals of Botany, 2003, 91: 107-109.
[4]Perata P, Alpi A. Plant responses to anaerobiosis[J]. Plant Science, 1993, 93: 1-17.
[5]Sachs M M, Subbaiah C C, Saab I N. Anaerobic gene expression and flooding tolerance in maize[J]. Journal of Experimental Botany, 1996, 47: 1-15.
[6]Ricoult C, Echeverria L O, Cliquet J B , et al. Characterization of alanine amino transferase (AlaAT) multigene family and hypoxic response in young seedlings of the model legume Medicago truncatula[J]. Journal of Experimental Botany, 2006, 57: 3079-3089.
[7]康云艳, 郭世荣, 段九菊.根际低氧胁迫对黄瓜幼苗根系呼吸代谢的影响[J]. 应用生态学报, 2008, 19(3): 583-587.
[8]王文泉, 张福锁.高等植物厌氧适应的生理及分子机制[J]. 植物生理学通讯, 2001, 37(1): 63-70.
[9]Biemelt S, Keetman U, Albrecht G. Reaeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings[J]. Plant Physiol, 1998, 116(2): 651-658.
[10]Ma F W, Cheng L L, The sun-exposed peel of apple fruit has higher xanthophyll cycle-dependent thermal dissipation and antioxidants of the ascorbate glutathione pathway than the shaded peel[J]. Plant Science, 2003, 165(4): 819-827.
[11]Ma F W, Cheng L L. Exposure of the shaded side of apple fruit to full sun leads to upregulation of both xanthophyll cycle and the ascorbate glutathione cycle[J]. Plant Science, 2004, 166: 1479-1486.
[12]汪安琳,高强,陈裕菊. 油菜素内酯对湿地松苗的生理作用[J]. 南京林业大学学报, 1995, 19(4): 1-6.
[13]张殿中, 汪沛洪, 赵会贤. 测定小麦叶片游离脯氨酸含量的方法[J]. 植物生理学通讯, 1990, 26(4): 62-65.
[14]张志良. 植物生理学试验指导[M]. 北京:高等教育出版社, 1990.
[15]Newsome R D, Kozlowski T T, Tang Z C. Responses of seedling to flooding of soil[J]. Canada Journal of Botany, 1982, 60: 1688-1695.
[16]Sena Gomes A R, Kodowski T T. Efects of flooding on growth of Eucalyptus camalduleensis and E. globules seedlings[J]. Oecologia, 1980, 46: 139-142.
[17]刘瑞仙, 靖元孝, 肖林, 等. 淹水深度对互叶白千层幼苗气体交换、叶绿素荧光和生长的影响[J]. 生态学报, 2010, 30(19): 5113-5120.
[18]唐罗忠, 黄宝龙, 生原喜久雄, 等. 高水位条件下池杉根系的生态适应机制和膝根的呼吸特性[J]. 植物生态学报, 2008, 32(6): 1258-1267.
[19]蒋明义, 郭绍川. 水分亏缺诱导的氧化胁迫和植物抗氧化作用[J]. 植物生理学通讯, 1996, 32(2): 144-150.
[20]Mishra N P, Mishra R K, Singhal G S. Changes in the activities of antioxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors[J]. Plant Physical, 1993, 102:903-908.
[21]赵可夫. 植物在淹水胁迫下的适应性[J]. 生物学通报, 2003, 38(12):11-14.
[22]曾淑华, 赵正雄, 覃鹏, 等. 淹水对转超氧化物歧化酶或过氧化物酶基因烟草某些生理生化指标的影响[J]. 植物生理学通讯, 2005, 49(5): 603-606.
[23]王义强, 谷文众, 姚水攀, 等. 淹水胁迫下银杏主要生化指标的变化[J]. 中南林学院学报, 2005, 25(4): 78-80.
[24]潘向燕. 杂交鹅掌楸不同无性系对淹水胁迫的反应[D]. 南京:南京林业大学, 2006.
[25]黄利斌, 杨静, 何开跃, 等. 纳塔栎和南方红栎2年生苗耐水湿性试验[J].北京林业大学学报, 2009, 37(5):7-9.
[26]唐罗忠, 徐锡增, 方升佐.土壤涝渍对杨树和柳树苗期生长及生理性状影响的研究[J]. 应用生态学报, 1998, 9(5): 471-474.
[27]Tang Zhangcheng. The accumulation of free proline and its roles in waterstressed sorghum seedlings[J]. Acta Phytophysiologica Sinica, 1989, 15(1): 105-110.
[28]余叔文, 汤章城. 植物生理与分子生物学[M]. 北京: 科学出版社, 1999.
[29]陈亚鹏, 陈亚宁, 李卫红, 等. 干旱胁迫下胡杨脯氧酸累积特点分析[J].干旱区地理, 2003, 26(4): 420-424.
[30]范苏鲁, 苑兆和, 冯立娟, 等. 干旱胁迫对大丽花生理生化指标的影响[J]. 应用生态学报, 2011, 22(3): 651-657.
[31]时丽冉, 刘志华. 干旱胁迫对苣荬菜抗氧化酶和渗透调节物质的影响[J]. 草地学报, 2010, 18(5): 673-677.
[32]张香凝, 崔令军, 王保平, 等. 土壤干旱胁迫对Larrea tridentata叶片膜脂过氧化和保护酶活性的影响[J]. 生态环境学报, 2010, 19(11): 2587-2591.
[33]陈忠, 苏维埃. 豌豆热激蛋白npc60对酶的高温保护功能及其机理[J]. 科学通报, 1999, 44(20): 2171-2175.
[34]秦嗣军, 赵德英, 吕德国, 等. 水分胁迫对寒富苹果叶片碳氮代谢的影响[J]. 吉林农业大学学报, 2010, 32(4): 402-406.
[35]康俊梅, 杨青川, 樊奋成. 干旱对苜蓿叶片可溶性蛋白的影响[J].草地学报, 2005, 13(3): 199-202.
[36]陈成升, 谢志霞, 刘小京. 盐分、干旱胁迫下冬小麦叶片部分渗透调节物质的动态变化[J].植物研究, 2009, 29(6): 708-713.
基金
收稿日期:2010-11-11修回日期:2011-05-13基金项目:“十二五”国家科技支撑计划(2011BAD38B01);国家自然科学基金项目(30771706)作者简介:张往祥(1965—),副教授。Email:malus2011@163.com。