氮素是植物生长发育必需的营养元素,利用水生植物吸收水体中的氮素是富营养化水体生态修复的重要途径。以水芹(Oenanthe javanica)为研究材料,在中富营养和超富营养两种水平下,探讨模拟酸雨对水芹根部H+、NH+4和NO-3离子流及根系活力的影响。结果表明,酸雨对水芹根系吸收水体中氮素产生影响,并随富营养化水平提高其影响加大。分析发现:(1)水芹对NH+4有吸收偏好;(2)与对照相比,模拟酸雨降低了根部H+的外排,相应地减弱了NH+4的内流,增加了NO-3的外排,但对根系活力无显著影响;(3)超富营养水平下,酸雨对水芹离子流的影响增强,并使根系活力显著降低。
Abstract
Nitrogen is necessary for plant growth of the nutritional elements. To absorb Nitrogen from eutrophicational water by using aquatic plants is important means to ecological restoration. Acid rain has become a serious region environment problem. China is the third acid rain area in the world. It should be further studied that how aquatic plants responded with simulated acid rain, and how acid rain effected on the nutrition cycle of roots. It was significant for the further physiological and ecological studies on the interrelationship between acid rain and aquatic plants in acid rain region. In this study, Oenanthe javanica was selected as research material to study the effects of simulated acid rain on H+, NH+4, NO-3 fluxes in the roots and root activity among middle eutropher or hyper eutropher. The results showed:(1)O. javanica preference to absorption of NH+4.(2)Compared with the contrast, simulated acid rain reduced H+ effluxes, receded NH+4 influxes, increased NO-3 effluxes, and no significant effect on the root activity.(3)The effect of simulated acid rain on ion fluxes in the roots was enhanced and the root activity was significant deceased among hyper eutropher. To conclude that acid rain affected the absorption of Nitrogen ions fluxes and advanced eutrophication level would strengthen the influence of acid rain.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张新民,柴发合,王淑兰,等.中国酸雨研究现状[J].环境科学研究,2010,23(5):527-532.
[2] Krusche A V,Camargo P B,Cerri C E,et al. Acid rain and nitrogen deposition in a sub-tropical watershed(Piracicaba): ecosystem consequences[J]. Environmental Pollution, 2003, 121(3): 389-399.
[3] 赵首萍,赵学强,施卫明.高等植物氮素吸收分子机理研究进展[J].土壤,2007,39(2):173-180.
[4] 贾莉君,范晓荣,尹晓明,等.微电极法测定水稻叶片液泡中硝酸根离子的再调动[J].中国农业科学,2005,38(7):1379-1385.
[5] Babourina O, Voltchanskii K, McGann B, et al. Nitrate supply affects ammonium transport in canola roots[J]. Journal of Experimental Botany, 2007, 58(3): 651-658.
[6] 陈永亮.不同氮源处理对红松苗木根际pH及养分有效性的影响[J].南京林业大学学报:自然科学版,2004,28(1):42-46.
[7] Hawkins B J, Boukcim H, Plassard C. A comparison of ammonium, nitrate and proton net fluxes along seedling roots of Dougls-fir and lodgepole pine grown and measured with different inorganic nitrogen sources[J]. Plant, Cell and Environment, 2008, 31(3):278-287.
[8] 李川,薛建辉,苏莹莹,等.不同pH条件下铜对固定化小球藻除氮效果的影响[J].南京林业大学学报:自然科学版,2009,33(4):105-108.
[9] Cedergreen N, Madsen T V. Light regulation of root and leaf NO-3 uptake and reduction in the floating macrophyte Lemna minor[J]. New Phytologist, 2003, 161(2): 449-457.
[10] Fang Y Y, Babourina O, Rengel Z, et al. Ammonium and nitrate uptake by the floating plant Landoltia punctata[J]. Annals of Botany, 2007,99(2): 365-370.
[11] 江苏省环保厅.江苏省环境质量报告书2004—2010年[R].南京:江苏省环境保护厅,2010.
[12] 梁骏.南京酸雨对土壤和作物产量品质形成的影响研究[D].南京:南京信息工程大学,2008.
[13] Newman I A. Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function[J].Plant, Cell and Environment, 2001, 24(1): 1-14.
[14] 印莉萍,上官宇,许越.非损伤性扫描离子选择电极技术及其在高等植物研究中的应用[J].自然科学进展,2006,16(3):262-266.
[15] 邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000.
[16] Sun Jian, Chen Shaoliang, Dai Songxiang, et al. Ion flux profiles and plant ion homeostasis control under salt stress [J]. Plant Signaling & Behavior, 2009, 4(4):261-264.
[17] Crawford N M, Glass A D M. Molecular and Physiological aspects of nitrate uptake in plants [J]. Trends in Plant Science,1998,3(10):389-395.
[18] Crawford N M. Nitrate: nutrient and signal for plant growth [J]. Plant Cell,1995,7(7):859-868.
[19] Wang M Y, Glass A D M, Shaff J E, et al. Ammonium uptake by rice roots Ⅲ: Electrophysiology[J]. Plant Physiology, l994, 104(3):899-906.
[20] Li Q, Li B H, Kronzucker H J, et al. Root growth inhibition by NH+4 in Arabidopsis is mediated by the root tip and is linked to NH+4 efflux and GMPase activity[J]. Plant, Cell and Environment, 2010, 33(9):1529-1542.
[21] Taylor A R, Bloom A J. Ammonium, nitrate, and proton fluxes along the maize root [J]. Plant, Cell and Environment, 1998,21(12): 1255-1263.
[22] 田霄鸿,李生秀.几种蔬菜对硝态氮、铵态氮的相对吸收能力[J].植物营养与肥料学报,2000,6(2):194-201.
[23] Kronzucker H J, Glass A D M, Siddiqi M Y. Nitrate induction in spruce: an approach using compartmental analysis[J]. Planta, 1995, 196(4): 683-690.
[24] Cedergreen N, Madsen T V. Nitrogen uptake by the floating macrophyte Lemna minor [J]. New Phytologist,2002,155: 285-292.
[25] Korner S, Das S K, Veenstra S, et al. The effect of pH variation at the ammonium /ammonia equilibrium in wastewater and its toxicity to Lemna gibba[J]. Aquatic Botany, 2001, 71(1): 71-78.
基金
收稿日期:2011-12-06 修回日期:2012-01-12 基金项目:“十一五”国家科技支撑计划(2008BAJ10B04) 第一作者:罗英,副教授,博士生。*通信作者:薛建辉,教授。E-mail: jhxue@njfu.com.cn。引文格式:罗英,薛建辉,尹璐,等. 模拟酸雨对水芹根部NH+4、NO-3、H+离子通量的影响[J]. 南京林业大学学报:自然科学版,2012,36(2):1